This is a bibliography of papers published using BGC Argo Mission float data.

A complete list of all Argo publications is also maintained on this site.

To learn how to properly cite Argo data, click here.

Please send argo@ucsd.edu citations for Argo articles to keep this part of the bibliography updated.

Updated October 27, 2022

Click here to download this file in pdf form.

Number of papers published using BGC Argo Mission data

2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 |
2003 | 2002

2022 (60)

Arteaga, L. A., M. J. Behrenfeld, E. Boss, and T. K. Westberry (2022), Vertical Structure in Phytoplankton Growth and Productivity Inferred From Biogeochemical-Argo Floats and the Carbon-Based Productivity Model, Glob. Biogeochem. Cycle, 36(8), e2022GB007389, doi: https://doi.org/10.1029/2022GB007389.

Barbieux, M., et al. (2022), Biological production in two contrasted regions of the Mediterranean Sea during the oligotrophic period: an estimate based on the diel cycle of optical properties measured by BioGeoChemical-Argo profiling floats, Biogeosciences, 19(4), 1165-1194, doi: https://doi.org/10.5194/bg-19-1165-2022.

Beaton, A. D., et al. (2022), Lab-on-Chip for In Situ Analysis of Nutrients in the Deep Sea, ACS Sensors, 7(1), 89-98, doi: https://doi.org/10.1021/acssensors.1c01685.

Begouen Demeaux, C., and E. Boss (2022), Validation of Remote-Sensing Algorithms for Diffuse Attenuation of Downward Irradiance Using BGC-Argo Floats, Remote Sensing, 14(18), 4500, doi: https://doi.org/10.3390/rs14184500.

Bock, N., M. Cornec, H. Claustre, and S. Duhamel (2022), Biogeographical Classification of the Global Ocean From BGC-Argo Floats, Glob. Biogeochem. Cycle, 36(6), e2021GB007233, doi: https://doi.org/10.1029/2021GB007233.

Brewin, R. J. W., G. Dall’Olmo, J. Gittings, X. Sun, P. K. Lange, D. E. Raitsos, H. A. Bouman, I. Hoteit, J. Aiken, and S. Sathyendranath (2022), A Conceptual Approach to Partitioning a Vertical Profile of Phytoplankton Biomass Into Contributions From Two Communities, Journal of Geophysical Research: Oceans, 127(4), e2021JC018195, doi: https://doi.org/10.1029/2021JC018195.

Bruyant, F., et al. (2022), The Green Edge cruise: investigating the marginal ice zone processes during late spring and early summer to understand the fate of the Arctic phytoplankton bloom, Earth Syst. Sci. Data, 14(10), 4607-4642, doi: https://doi.org/10.5194/essd-14-4607-2022.

Capet, A., G. Taburet, E. Mason, M. I. Pujol, M. Grégoire, and M.-H. Rio (2022), Using Argo Floats to Characterize Altimetry Products: A Study of Eddy-Induced Subsurface Oxygen Anomalies in the Black Sea, Frontiers in Marine Science, 9, doi: https://doi.org/10.3389/fmars.2022.875653.

Chen, H., F. A. Haumann, L. D. Talley, K. S. Johnson, and J. L. Sarmiento (2022), The Deep Ocean’s Carbon Exhaust, Glob. Biogeochem. Cycle, 36(7), e2021GB007156, doi: https://doi.org/10.1029/2021GB007156.

Chen, J., X. Gong, X. Guo, X. Xing, K. Lu, H. Gao, and X. Gong (2022), Improved Perceptron of Subsurface Chlorophyll Maxima by a Deep Neural Network: A Case Study with BGC-Argo Float Data in the Northwestern Pacific Ocean, Remote Sensing, 14(3), 632, doi: https://doi.org/10.3390/rs14030632.

Cheriyan, E., A. R. Rao, and K. V. Sanilkumar (2022), Response of sea surface temperature, chlorophyll and particulate organic carbon to a tropical cyclonic storm over the Arabian Sea, Southwest India, Dynamics of Atmospheres and Oceans, 97, 101287, doi: https://doi.org/10.1016/j.dynatmoce.2022.101287.

Chiswell, S. M., A. Gutiérrez-Rodríguez, M. Gall, K. Safi, R. Strzepek, M. R. Décima, and S. D. Nodder (2022), Seasonal cycles of phytoplankton and net primary production from Biogeochemical Argo float data in the south-west Pacific Ocean, Deep Sea Research Part I: Oceanographic Research Papers, 187, 103834, doi: https://doi.org/10.1016/j.dsr.2022.103834.

Dove, L. A., D. Balwada, A. F. Thompson, and A. R. Gray (2022), Enhanced Ventilation in Energetic Regions of the Antarctic Circumpolar Current, Geophys. Res. Lett., 49(13), e2021GL097574, doi: https://doi.org/10.1029/2021GL097574.

Fernández Castro, B., M. Mazloff, R. G. Williams, and A. C. Naveira Garabato (2022), Subtropical Contribution to Sub-Antarctic Mode Waters, Geophys. Res. Lett., 49(11), e2021GL097560, doi: https://doi.org/10.1029/2021GL097560.

Fujiki, T., S. Hosoda, and N. Harada (2022), Phytoplankton blooms in summer and autumn in the northwestern subarctic Pacific detected by the mooring and float systems, J. Oceanogr., 78(2), 63-72, doi: https://doi.org/10.1007/s10872-021-00628-z.

Galí, M., M. Falls, H. Claustre, O. Aumont, and R. Bernardello (2022), Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean, Biogeosciences, 19(4), 1245-1275, doi: https://doi.org/10.5194/bg-19-1245-2022.

Girishkumar, M. S. (2022), Surface chlorophyll blooms in the Southern Bay of Bengal during the extreme positive Indian Ocean dipole, Climate Dynamics, 59(5), 1505-1519, doi: https://doi.org/10.1007/s00382-021-06050-x.

Gloege, L., M. Yan, T. Zheng, and G. A. McKinley (2022), Improved Quantification of Ocean Carbon Uptake by Using Machine Learning to Merge Global Models and pCO2 Data, Journal of Advances in Modeling Earth Systems, 14(2), e2021MS002620, doi: https://doi.org/10.1029/2021MS002620.

Guo, M., P. Xiu, and X. Xing (2022), Oceanic Fronts Structure Phytoplankton Distributions in the Central South Indian Ocean, Journal of Geophysical Research: Oceans, 127(1), e2021JC017594, doi: https://doi.org/10.1029/2021JC017594.

Hu, Q., X. Chen, X. He, Y. Bai, Q. Zhong, F. Gong, Q. Zhu, and D. Pan (2022), Seasonal Variability of Phytoplankton Biomass Revealed by Satellite and BGC-Argo Data in the Central Tropical Indian Ocean, Journal of Geophysical Research: Oceans, 127(10), e2021JC018227, doi: https://doi.org/10.1029/2021JC018227.

Hu, Y., W. Shao, J. Li, C. Zhang, L. Cheng, and Q. Ji (2022), Short-Term Variations in Water Temperature of the Antarctic Surface Layer, Journal of Marine Science and Engineering, 10(2), 287, doi: https://doi.org/10.3390/jmse10020287.

Huang, C., Y. Liu, Y. Luo, Y. Wang, X. Liu, Y. Zhang, Y. Zhuang, and Y. Tian (2022), Improvement and Assessment of Ocean Color Algorithms in the Northwest Pacific Fishing Ground Using Himawari-8, MODIS-Aqua, and VIIRS-SNPP, Remote Sensing, 14(15), 3610, doi: https://doi.org/10.3390/rs14153610.

Huang, Y., A. J. Fassbender, J. S. Long, S. Johannessen, and M. Bernardi Bif (2022), Partitioning the Export of Distinct Biogenic Carbon Pools in the Northeast Pacific Ocean Using a Biogeochemical Profiling Float, Glob. Biogeochem. Cycle, 36(2), e2021GB007178, doi: https://doi.org/10.1029/2021GB007178.

Ito, T. (2022), Development of the Regional Carbon Cycle Model in the Central Pacific Sector of the Southern Ocean, Journal of Advances in Modeling Earth Systems, 14(6), e2021MS002757, doi: https://doi.org/10.1029/2021MS002757.

Johnson, K. S., et al. (2022), Carbon to Nitrogen Uptake Ratios Observed Across the Southern Ocean by the SOCCOM Profiling Float Array, Journal of Geophysical Research: Oceans, 127(9), e2022JC018859, doi: https://doi.org/10.1029/2022JC018859.

Koestner, D., D. Stramski, and R. A. Reynolds (2022), A Multivariable Empirical Algorithm for Estimating Particulate Organic Carbon Concentration in Marine Environments From Optical Backscattering and Chlorophyll-a Measurements, Frontiers in Marine Science, 9, doi: https://doi.org/10.3389/fmars.2022.941950.

Kolyuchkina, G. A., et al. (2022), Benthic community structure near the margin of the oxic zone: A case study on the Black Sea, J. Mar. Syst., 227, 103691, doi: https://doi.org/10.1016/j.jmarsys.2021.103691.

Kubryakov, A. A., and S. V. Stanichny (2022), Sinking velocity of small particles in the Black Sea: Vertical distribution and seasonal variability from continuous Bio-Argo measurements of backscattering, J. Mar. Syst., 227, 103695, doi: https://doi.org/10.1016/j.jmarsys.2021.103695.

LaBrie, R., et al. (2022), Deep ocean microbial communities produce more stable dissolved organic matter through the succession of rare prokaryotes, Science Advances, 8(27), eabn0035, doi: https://www.science.org/doi/abs/10.1126/sciadv.abn0035.

Li, X., Z. Mao, H. Zheng, W. Zhang, D. Yuan, Y. Li, Z. Wang, and Y. Liu (2022), Process-Oriented Estimation of Chlorophyll-a Vertical Profile in the Mediterranean Sea Using MODIS and Oceanographic Float Products, Frontiers in Marine Science, 9, doi: https://doi.org/10.3389/fmars.2022.933680.

Li, X., Y.-Y. Xu, D. L. Kirchman, and W.-J. Cai (2022), Carbonate Parameter Estimation and Its Application in Revealing Temporal and Spatial Variation in the South and Mid-Atlantic Bight, USA, Journal of Geophysical Research: Oceans, 127(7), e2022JC018811, doi: https://doi.org/10.1029/2022JC018811.

Metzl, N., C. Lo Monaco, C. Leseurre, C. Ridame, J. Fin, C. Mignon, M. Gehlen, and T. T. T. Chau (2022), The impact of the South-East Madagascar Bloom on the oceanic CO2 sink, Biogeosciences, 19(5), 1451-1468, doi: https://doi.org/10.5194/bg-19-1451-2022.

Mignot, A., K. von Schuckmann, P. Landschützer, F. Gasparin, S. van Gennip, C. Perruche, J. Lamouroux, and T. Amm (2022), Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves, Nature Communications, 13(1), 4300, doi: https://doi.org/10.1038/s41467-022-31983-0.

Nickford, S., J. B. Palter, K. Donohue, A. J. Fassbender, A. R. Gray, J. Long, A. J. Sutton, N. R. Bates, and Y. Takeshita (2022), Autonomous Wintertime Observations of Air-Sea Exchange in the Gulf Stream Reveal a Perfect Storm for Ocean CO2 Uptake, Geophys. Res. Lett., 49(5), e2021GL096805, doi: https://doi.org/10.1029/2021GL096805.

O’Brien, T., and E. Boss (2022), Correction of Radiometry Data for Temperature Effect on Dark Current, with Application to Radiometers on Profiling Floats, Sensors, 22(18), 6771, doi: https://doi.org/10.3390/s22186771.

Pan, X. L., B. F. Li, and Y. W. Watanabe (2022), Intense ocean freshening from melting glacier around the Antarctica during early twenty-first century, Scientific Reports, 12(1), 383, doi: https://doi.org/10.1038/s41598-021-04231-6.

Park, M.-S., S. Lee, J.-H. Ahn, S.-J. Lee, J.-K. Choi, and J.-H. Ryu (2022), Decadal Measurements of the First Geostationary Ocean Color Satellite (GOCI) Compared with MODIS and VIIRS Data, Remote Sensing, 14(1), 72, doi: https://doi.org/10.3390/rs14010072.

Petit, F., J. Uitz, C. Schmechtig, C. Dimier, J. Ras, A. Poteau, M. Golbol, V. Vellucci, and H. Claustre (2022), Influence of the phytoplankton community composition on the in situ fluorescence signal: Implication for an improved estimation of the chlorophyll-a concentration from BioGeoChemical-Argo profiling floats, Frontiers in Marine Science, 9, doi: https://doi.org/10.3389/fmars.2022.959131.

Picheral, M., et al. (2022), The Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for autonomous and cabled platforms, Limnology and Oceanography: Methods, 20(2), 115-129, doi: https://doi.org/10.1002/lom3.10475.

Prakash, P., S. Prakash, M. Ravichandran, N. A. Kumar, and T. V. S. U. Bhaskar (2022), On anomalously high sub-surface dissolved oxygen in the Indian sector of the Southern Ocean, J. Oceanogr., 78(5), 369-380, doi: https://doi.org/10.1007/s10872-022-00644-7.

Prend, C. J., A. R. Gray, L. D. Talley, S. T. Gille, F. A. Haumann, K. S. Johnson, S. C. Riser, I. Rosso, J. Sauvé, and J. L. Sarmiento (2022), Indo-Pacific Sector Dominates Southern Ocean Carbon Outgassing, Glob. Biogeochem. Cycle, 36(7), e2021GB007226, doi: https://doi.org/10.1029/2021GB007226.

Prend, C. J., J. M. Hunt, M. R. Mazloff, S. T. Gille, and L. D. Talley (2022), Controls on the Boundary Between Thermally and Non-Thermally Driven pCO2 Regimes in the South Pacific, Geophys. Res. Lett., 49(9), e2021GL095797, doi: https://doi.org/10.1029/2021GL095797.

Roemmich, D., W. S. Wilson, W. J. Gould, W. B. Owens, P.-Y. Le Traon, H. J. Freeland, B. A. King, S. Wijffels, P. J. H. Sutton, and N. Zilberman (2022), Chapter 4 – The Argo Program, in Partnerships in Marine Research, edited by G. Auad and F. K. Wiese, pp. 53-69, Elsevier, doi: https://doi.org/10.1016/B978-0-323-90427-8.00004-6.

Schallenberg, C., R. F. Strzepek, S. Bestley, B. Wojtasiewicz, and T. W. Trull (2022), Iron Limitation Drives the Globally Extreme Fluorescence/Chlorophyll Ratios of the Southern Ocean, Geophys. Res. Lett., 49(12), e2021GL097616, doi: https://doi.org/10.1029/2021GL097616.

Seelanki, V., T. Nigam, and V. Pant (2022), Inconsistent response of biophysical characteristics in the western Bay of Bengal associated with positive Indian Ocean dipole, Oceanologia, 64(4), 595-614, doi: https://doi.org/10.1016/j.oceano.2022.04.003.

Shu, C., P. Xiu, X. Xing, G. Qiu, W. Ma, R. J. W. Brewin, and S. Ciavatta (2022), Biogeochemical Model Optimization by Using Satellite-Derived Phytoplankton Functional Type Data and BGC-Argo Observations in the Northern South China Sea, Remote Sensing, 14(5), 1297, doi: https://doi.org/10.3390/rs14051297.

Singh, V. K., and M. K. Roxy (2022), A review of ocean-atmosphere interactions during tropical cyclones in the north Indian Ocean, Earth-Science Reviews, 226, 103967, doi: https://doi.org/10.1016/j.earscirev.2022.103967.

Stanev, E. V., K. Wahle, and J. Staneva (2022), The Synergy of Data From Profiling Floats, Machine Learning and Numerical Modeling: Case of the Black Sea Euphotic Zone, Journal of Geophysical Research: Oceans, 127(8), e2021JC018012, doi: https://doi.org/10.1029/2021JC018012.

Su, J., C. Schallenberg, T. Rohr, P. G. Strutton, and H. E. Phillips (2022), New Estimates of Southern Ocean Annual Net Community Production Revealed by BGC-Argo Floats, Geophys. Res. Lett., 49(15), e2021GL097372, doi: https://doi.org/10.1029/2021GL097372.

Svishchev, S. V., and A. A. Kubryakov (2022), Impact of Winter Cooling on the Interannual Variability in the Vertical Oxygen Distribution in the Black Sea: Evidence from Bio-Argo Floats, Oceanology, 62(2), 143-154, doi: https://doi.org/10.1134/S0001437022020163.

Taillandier, V., et al. (2022), Sources of the Levantine Intermediate Water in Winter 2019, Journal of Geophysical Research: Oceans, 127(6), e2021JC017506, doi: https://doi.org/10.1029/2021JC017506.

Wang, T., F. Chen, S. Zhang, J. Pan, A. T. Devlin, H. Ning, and W. Zeng (2022), Physical and Biochemical Responses to Sequential Tropical Cyclones in the Arabian Sea, Remote Sensing, 14(3), 529, doi: https://doi.org/10.3390/rs14030529.

Weis, J., C. Schallenberg, Z. Chase, A. R. Bowie, B. Wojtasiewicz, M. M. G. Perron, M. D. Mallet, and P. G. Strutton (2022), Southern Ocean Phytoplankton Stimulated by Wildfire Emissions and Sustained by Iron Recycling, Geophys. Res. Lett., 49(11), e2021GL097538, doi: https://doi.org/10.1029/2021GL097538.

Wu, Y., D. C. E. Bakker, E. P. Achterberg, A. N. Silva, D. D. Pickup, X. Li, S. Hartman, D. Stappard, D. Qi, and T. Tyrrell (2022), Integrated analysis of carbon dioxide and oxygen concentrations as a quality control of ocean float data, Communications Earth & Environment, 3(1), 92, doi: https://doi.org/10.1038/s43247-022-00421-w.

Wu, Y., and D. Qi (2022), Inconsistency between ship- and Argo float-based pCO2 at the intense upwelling region of the Drake Passage, Southern Ocean, Frontiers in Marine Science, 9, doi: https://doi.org/10.3389/fmars.2022.1002398.

Xing, X., Z. Lee, P. Xiu, S. Chen, and F. Chai (2022), A Dual-Band Model for the Vertical Distribution of Photosynthetically Available Radiation (PAR) in Stratified Waters, Frontiers in Marine Science, 9, doi: https://doi.org/10.3389/fmars.2022.928807.

Yang, B., S. R. Emerson, and M. F. Cronin (2022), Skin Temperature Correction for Calculations of Air-Sea Oxygen Flux and Annual Net Community Production, Geophys. Res. Lett., 49(3), e2021GL096103, doi: https://doi.org/10.1029/2021GL096103.

Zemskova, V. E., T.-L. He, Z. Wan, and N. Grisouard (2022), A deep-learning estimate of the decadal trends in the Southern Ocean carbon storage, Nature Communications, 13(1), 4056, doi: https://doi.org/10.1038/s41467-022-31560-5.

Zhang, Z., P. Chen, and Z. Mao (2022), SOLS: An Open-Source Spaceborne Oceanic Lidar Simulator, Remote Sensing, 14(8), 1849, doi: https://doi.org/10.3390/rs14081849.

Zheng, H., Y. Ma, J. Huang, J. Yang, D. Su, F. Yang, and X. H. Wang (2022), Deriving vertical profiles of chlorophyll-a concentration in the upper layer of seawaters using ICESat-2 photon-counting lidar, Opt. Express, 30(18), 33320-33336, doi: https://doi.org/10.1364/OE.463622.

2021 (81)

Ashkezari, M. D., N. R. Hagen, M. Denholtz, A. Neang, T. C. Burns, R. L. Morales, C. P. Lee, C. N. Hill, and E. V. Armbrust (2021), Simons Collaborative Marine Atlas Project (Simons CMAP): An open-source portal to share, visualize, and analyze ocean data, Limnology and Oceanography: Methods, 19(7), 488-496, doi: https://doi.org/10.1002/lom3.10439.

Becker, M., A. Olsen, and G. Reverdin (2021), In-air one-point calibration of oxygen optodes in underway systems, Limnology and Oceanography: Methods, 19(5), 293-302, doi: https://doi.org/10.1002/lom3.10423.

Bisson, K. M., E. Boss, P. J. Werdell, A. Ibrahim, and M. J. Behrenfeld (2021), Particulate Backscattering in the Global Ocean: A Comparison of Independent Assessments, Geophys. Res. Lett., 48(2), e2020GL090909, doi: https://doi.org/10.1029/2020GL090909.

Bisson, K. M., E. Boss, P. J. Werdell, A. Ibrahim, R. Frouin, and M. J. Behrenfeld (2021), Seasonal bias in global ocean color observations, Applied Optics, 60(23), 6978-6988, doi: https://doi.org/10.1364/AO.426137.

Bisson, K. M., and B. B. Cael (2021), How Are Under Ice Phytoplankton Related to Sea Ice in the Southern Ocean?, Geophys. Res. Lett., 48(21), e2021GL095051, doi: https://doi.org/10.1029/2021GL095051.

Bock, N. (2021), Drivers of Variability in the Structure and Function of Marine Microbial Communities: From Cell Physiology to the Global Environment, Ph.D. thesis, 221 pp, Columbia University, Ann Arbor https://www.proquest.com/dissertations-theses/drivers-variability-structure-function-marine/docview/2584328472/se-2?accountid=14524

Chai, F., Y. Wang, X. Xing, Y. Yan, H. Xue, M. Wells, and E. Boss (2021), A limited effect of sub-tropical typhoons on phytoplankton dynamics, Biogeosciences, 18(3), 849-859, doi: https://doi.org/10.5194/bg-18-849-2021.

Chauhan, A., R. P. Singh, P. Dash, and R. Kumar (2021), Impact of tropical cyclone “Fani” on land, ocean, atmospheric and meteorological parameters, Marine Pollution Bulletin, 162, 111844, doi: https://doi.org/10.1016/j.marpolbul.2020.111844.

Chen, S., M. L. Wells, R. X. Huang, H. Xue, J. Xi, and F. Chai (2021), Episodic subduction patches in the western North Pacific identified from BGC-Argo float data, Biogeosciences, 18(19), 5539-5554, doi: https://doi.org/10.5194/bg-18-5539-2021.

Ciliberti, S. A., et al. (2021), Monitoring and Forecasting the Ocean State and Biogeochemical Processes in the Black Sea: Recent Developments in the Copernicus Marine Service, Journal of Marine Science and Engineering, 9(10), doi: https://doi.org/10.3390/jmse9101146.

Claustre, H., L. Legendre, P. W. Boyd, and M. Levy (2021), The Oceans’ Biological Carbon Pumps: Framework for a Research Observational Community Approach, Frontiers in Marine Science, 8, doi: https://doi.org/10.3389/fmars.2021.780052.

Clayton, S., H. I. Palevsky, L. Thompson, and P. D. Quay (2021), Synoptic Mesoscale to Basin Scale Variability in Biological Productivity and Chlorophyll in the Kuroshio Extension Region, Journal of Geophysical Research: Oceans, 126(11), e2021JC017782, doi: https://doi.org/10.1029/2021JC017782.

Cliff, E., S. Khatiwala, and A. Schmittner (2021), Glacial deep ocean deoxygenation driven by biologically mediated air–sea disequilibrium, Nat. Geosci., 14(1), 43-50, doi: https://doi.org/10.1038/s41561-020-00667-z.

Cornec, M., H. Claustre, A. Mignot, L. Guidi, L. Lacour, A. Poteau, F. D’Ortenzio, B. Gentili, and C. Schmechtig (2021), Deep Chlorophyll Maxima in the Global Ocean: Occurrences, Drivers and Characteristics, Glob. Biogeochem. Cycle, 35(4), e2020GB006759, doi: https://doi.org/10.1029/2020GB006759.

Cornec, M., R. Laxenaire, S. Speich, and H. Claustre (2021), Impact of Mesoscale Eddies on Deep Chlorophyll Maxima, Geophys. Res. Lett., 48(15), e2021GL093470, doi: https://doi.org/10.1029/2021GL093470.

Cossarini, G., et al. (2021), High-Resolution Reanalysis of the Mediterranean Sea Biogeochemistry (1999–2019), Frontiers in Marine Science, 8(1537), doi: https://doi.org/10.3389/fmars.2021.741486.

Denvil-Sommer, A., M. Gehlen, and M. Vrac (2021), Observation system simulation experiments in the Atlantic Ocean for enhanced surface ocean pCO2 reconstructions, Ocean Sci., 17(4), 1011-1030, doi: https://os.copernicus.org/articles/17/1011/2021/.

Diaz, B. P., et al. (2021), Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic, Nature Communications, 12(1), 6634, doi: https://doi.org/10.1038/s41467-021-26836-1.

D’Ortenzio, F., et al. (2021), BGC-Argo Floats Observe Nitrate Injection and Spring Phytoplankton Increase in the Surface Layer of Levantine Sea (Eastern Mediterranean), Geophys. Res. Lett., 48(8), e2020GL091649, doi: https://doi.org/10.1029/2020GL091649.

Dove, L. A., A. F. Thompson, D. Balwada, and A. R. Gray (2021), Observational Evidence of Ventilation Hotspots in the Southern Ocean, Journal of Geophysical Research: Oceans, 126(7), e2021JC017178, doi: https://doi.org/10.1029/2021JC017178.

El Hourany, R., C. Mejia, G. Faour, M. Crépon, and S. Thiria (2021), Evidencing the Impact of Climate Change on the Phytoplankton Community of the Mediterranean Sea Through a Bioregionalization Approach, Journal of Geophysical Research: Oceans, 126(4), e2020JC016808, doi: https://doi.org/10.1029/2020JC016808.

Ford, D. (2021), Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design, Biogeosciences, 18(2), 509-534, doi: https://doi.org/10.5194/bg-18-509-2021.

Frazão, H. C., and J. J. Waniek (2021), Mediterranean Water Properties at the Eastern Limit of the North Atlantic Subtropical Gyre since 1981, Oceans, 2(1), doi: https://doi.org/10.3390/oceans2010016.

Freilich, M., A. Mignot, G. Flierl, and R. Ferrari (2021), Grazing behavior and winter phytoplankton accumulation, Biogeosciences, 18(20), 5595-5607, doi: https://doi.org/10.5194/bg-18-5595-2021.

Galán, A., G. S. Saldías, A. Corredor-Acosta, R. Muñoz, C. Lara, and J. L. Iriarte (2021), Argo Float Reveals Biogeochemical Characteristics Along the Freshwater Gradient Off Western Patagonia, Frontiers in Marine Science, 8(784), doi: https://doi.org/10.3389/fmars.2021.613265.

Gasparin, F., S. Cravatte, E. Greiner, C. Perruche, M. Hamon, S. Van Gennip, and J.-M. Lellouche (2021), Excessive productivity and heat content in tropical Pacific analyses: Disentangling the effects of in situ and altimetry assimilation, Ocean Model., 160, 101768, doi: https://doi.org/10.1016/j.ocemod.2021.101768.

Grégoire, M., et al. (2021), A Global Ocean Oxygen Database and Atlas for Assessing and Predicting Deoxygenation and Ocean Health in the Open and Coastal Ocean, Frontiers in Marine Science, 8, doi: https://doi.org/10.3389/fmars.2021.724913.

Hague, M. (2021), Ice – ocean – atmosphere interactions in the Southern Ocean and implications for phytoplankton phenology http://hdl.handle.net/11427/33708.

Hague, M., and M. Vichi (2021), Southern Ocean Biogeochemical Argo detect under-ice phytoplankton growth before sea ice retreat, Biogeosciences, 18(1), 25-38, doi: https://doi.org/10.5194/bg-18-25-2021.

Hendry, K. R., N. Briggs, S. Henson, J. Opher, J. A. Brearley, M. P. Meredith, M. J. Leng, and L. Meire (2021), Tracing Glacial Meltwater From the Greenland Ice Sheet to the Ocean Using Gliders, Journal of Geophysical Research: Oceans, 126(8), e2021JC017274, doi: https://doi.org/10.1029/2021JC017274.

Hu, Q., X. Chen, X. He, Y. Bai, F. Gong, Q. Zhu, and D. Pan (2021), Effect of El Niño-Related Warming on Phytoplankton’s Vertical Distribution in the Arabian Sea, Journal of Geophysical Research: Oceans, 126(11), e2021JC017882, doi: https://doi.org/10.1029/2021JC017882.

Inoue, R., C. Sukigara, S. Bishop, E. Oka, and T. Nagai (2021), Geophysical and biogeochemical observations using BGC Argo floats in the western North Pacific during late winter and early spring. Part 1: Restratification processes of the surface mixed layer, Ocean Sci. Discuss., 2021, 1-37, doi: https://os.copernicus.org/preprints/os-2021-38/.

Jayaram, C., T. V. S. U. Bhaskar, N. Chacko, S. Prakash, and K. H. Rao (2021), Spatio-temporal variability of chlorophyll in the northern Indian Ocean: A biogeochemical argo data perspective, Deep Sea Research Part II: Topical Studies in Oceanography, 183, 104928, doi: https://doi.org/10.1016/j.dsr2.2021.104928.

Jayaram, C., J. Pavan Kumar, T. V. S. Udaya Bhaskar, I. V. G. Bhavani, T. D. V. Prasad Rao, and P. V. Nagamani (2021), Reconstruction of Gap-Free OCM-2 Chlorophyll-a Concentration Using DINEOF, Journal of the Indian Society of Remote Sensing, doi: https://doi.org/10.1007/s12524-021-01317-6.

Jemai, A., H. Bünger, R. Henkel, D. Voß, J. Wollschläger, and O. Zielinski (2021), Hyperspectral underwater light field sensing onboard BGC-Argo Floats, paper presented at OCEANS 2021: San Diego – Porto, 20-23 Sept. 2021.

Jemai, A., J. Wollschläger, D. Voß, and O. Zielinski (2021), Radiometry on Argo Floats: From the Multispectral State-of-the-Art on the Step to Hyperspectral Technology, Frontiers in Marine Science, 8(945), doi: https://www.frontiersin.org/article/10.3389/fmars.2021.676537.

Johnson, A. R., and M. M. Omand (2021), Evolution of a Subducted Carbon-Rich Filament on the Edge of the North Atlantic Gyre, Journal of Geophysical Research: Oceans, 126(2), e2020JC016685, doi: https://doi.org/10.1029/2020JC016685.

Johnson, K. S., and M. B. Bif (2021), Constraint on net primary productivity of the global ocean by Argo oxygen measurements, Nat. Geosci., 14(10), 769-774, doi: https://doi.org/10.1038/s41561-021-00807-z.

Jorge, D. S. F., et al. (2021), A three-step semi analytical algorithm (3SAA) for estimating inherent optical properties over oceanic, coastal, and inland waters from remote sensing reflectance, Remote Sens. Environ., 263, 112537, doi: https://doi.org/10.1016/j.rse.2021.112537.

Jutard, Q., et al. (2021), Correction of Biogeochemical-Argo Radiometry for Sensor Temperature-Dependence and Drift: Protocols for a Delayed-Mode Quality Control, Sensors, 21(18), doi: https://doi.org/10.3390/s21186217.

Kubryakov, A. A., A. S. Mikaelyan, and S. V. Stanichny (2021), Extremely strong coccolithophore blooms in the Black Sea: The decisive role of winter vertical entrainment of deep water, Deep Sea Research Part I: Oceanographic Research Papers, 173, 103554, doi: https://doi.org/10.1016/j.dsr.2021.103554.

Kubryakova, E. A., A. A. Kubryakov, and A. S. Mikaelyan (2021), Winter coccolithophore blooms in the Black Sea: Interannual variability and driving factors, J. Mar. Syst., 213, 103461, doi: https://doi.org/10.1016/j.jmarsys.2020.103461.

Kuttippurath, J., N. Sunanda, M. V. Martin, and K. Chakraborty (2021), Tropical storms trigger phytoplankton blooms in the deserts of north Indian Ocean, npj Climate and Atmospheric Science, 4(1), 11, doi: https://doi.org/10.1038/s41612-021-00166-x.

Kwiecinski, J. V., and A. R. Babbin (2021), A High-Resolution Atlas of the Eastern Tropical Pacific Oxygen Deficient Zones, Glob. Biogeochem. Cycle, 35(12), e2021GB007001, doi: https://doi.org/10.1029/2021GB007001.

Lazzari, P., S. Salon, E. Terzić, W. W. Gregg, F. D’Ortenzio, V. Vellucci, E. Organelli, and D. Antoine (2021), Assessment of the spectral downward irradiance at the surface of the Mediterranean Sea using the radiative Ocean-Atmosphere Spectral Irradiance Model (OASIM), Ocean Sci., 17(3), 675-697, doi: https://os.copernicus.org/articles/17/675/2021/.

Li, M., F. Shen, and X. Sun (2021), 2019‒2020 Australian bushfire air particulate pollution and impact on the South Pacific Ocean, Scientific Reports, 11(1), 12288, doi: https://doi.org/10.1038/s41598-021-91547-y.

Li, Z., M. S. Lozier, and N. Cassar (2021), Linking Southern Ocean Mixed-Layer Dynamics to Net Community Production on Various Timescales, Journal of Geophysical Research: Oceans, 126(10), e2021JC017537, doi: https://doi.org/10.1029/2021JC017537.

Lu, X., et al. (2021), New Ocean Subsurface Optical Properties From Space Lidars: CALIOP/CALIPSO and ATLAS/ICESat-2, Earth and Space Science, 8(10), e2021EA001839, doi: https://doi.org/10.1029/2021EA001839.

Maneesha, K., D. H. Prasad, and K. V. K. R. K. Patnaik (2021), Biophysical responses to tropical cyclone Hudhud over the Bay of Bengal, J. Oper. Oceanogr., 14(2), 87-97, doi: https://doi.org/10.1080/1755876X.2019.1684135.

Mathew, T., S. Prakash, L. Shenoy, A. Chatterjee, T. V. S. Udaya Bhaskar, and B. Wojtasiewicz (2021), Observed variability of monsoon blooms in the north-central Arabian Sea and its implication on oxygen concentration: A bio-argo study, Deep Sea Research Part II: Topical Studies in Oceanography, 184-185, 104935, doi: https://doi.org/10.1016/j.dsr2.2021.104935.

Maurer, T. L., J. N. Plant, and K. S. Johnson (2021), Delayed-Mode Quality Control of Oxygen, Nitrate, and pH Data on SOCCOM Biogeochemical Profiling Floats, Frontiers in Marine Science, 8(1118), doi: https://doi.org/10.3389/fmars.2021.683207.

Mignot, A., et al. (2021), Defining BGC-Argo-based metrics of ocean health and biogeochemical functioning for the evaluation of global ocean models, Biogeosciences Discuss., 2021, 1-66, doi: https://bg.copernicus.org/preprints/bg-2021-2/.

Organelli, E., E. Leymarie, O. Zielinski, J. Uitz, F. D’Ortenzio, and H. Claustre (2021), Hyperspectral radiometry on Biogeochemical-Argo floats: A bright perspective for phytoplankton diversity, Frontiers in Ocean Observing: Documenting Ecosystems, Understanding Environmental Changes, Forecasting Hazards. E.S. Kappel, S.K. Juniper, S. Seeyave, E. Smith, and M. Visbeck, eds, A Supplement to Oceanography, 34(4), doi: https://doi.org/10.5670/oceanog.2021.supplement.02-33.

Pramanik, S., and S. Sil (2021), Assessment of SCATSat-1 Scatterometer Winds on the Upper Ocean Simulations in the North Indian Ocean, Journal of Geophysical Research: Oceans, 126(6), e2020JC016677, doi: https://doi.org/10.1029/2020JC016677.

Prasanth, R., V. Vijith, V. Thushara, J. V. George, and P. N. Vinayachandran (2021), Processes governing the seasonality of vertical chlorophyll-a distribution in the central Arabian Sea: Bio-Argo observations and ecosystem model simulation, Deep Sea Research Part II: Topical Studies in Oceanography, 183, 104926, doi: https://doi.org/10.1016/j.dsr2.2021.104926.

Ricour, F., A. Capet, F. D’Ortenzio, B. Delille, and M. Grégoire (2021), Dynamics of the deep chlorophyll maximum in the Black Sea as depicted by BGC-Argo floats, Biogeosciences, 18(2), 755-774, doi: https://doi.org/10.5194/bg-18-755-2021.

Roemmich, D., et al. (2021), The technological, scientific, and sociological revolution of global subsurface ocean observing, rontiers in Ocean Observing: Documenting Ecosystems, Understanding Environmental Changes, Forecasting Hazards. E.S. Kappel, S.K. Juniper, S. Seeyave, E. Smith, and M. Visbeck, eds, A Supplement to Oceanography, 34(4), 2-8, doi: https://doi.org/10.5670/oceanog.2021.supplement.02-02.

Seelanki, V., T. Nigam, and V. Pant (2021), Upper-ocean physical and biological features associated with Hudhud cyclone: A bio-physical modelling study, J. Mar. Syst., 215, 103499, doi: https://doi.org/10.1016/j.jmarsys.2020.103499.

Su, J., P. G. Strutton, and C. Schallenberg (2021), The subsurface biological structure of Southern Ocean eddies revealed by BGC-Argo floats, J. Mar. Syst., 220, 103569, doi: https://doi.org/10.1016/j.jmarsys.2021.103569.

Sutton, A. J., N. L. Williams, and B. Tilbrook (2021), Constraining Southern Ocean CO2 Flux Uncertainty Using Uncrewed Surface Vehicle Observations, Geophys. Res. Lett., 48(3), e2020GL091748, doi: https://doi.org/10.1029/2020GL091748.

Swierczek, S., M. R. Mazloff, M. Morzfeld, and J. L. Russell (2021), The Effect of Resolution on Vertical Heat and Carbon Transports in a Regional Ocean Circulation Model of the Argentine Basin, Journal of Geophysical Research: Oceans, 126(7), e2021JC017235, doi: https://doi.org/10.1029/2021JC017235.

Tang, W., et al. (2021), Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires, Nature, 597(7876), 370-375, doi: https://doi.org/10.1038/s41586-021-03805-8.

Teruzzi, A., G. Bolzon, L. Feudale, and G. Cossarini (2021), Deep chlorophyll maximum and nutricline in the Mediterranean Sea: emerging properties from a multi-platform assimilated biogeochemical model experiment, Biogeosciences, 18(23), 6147-6166, doi: https://doi.org/10.5194/bg-18-6147-2021.

Terzić, E., A. Miró, E. Organelli, P. Kowalczuk, F. D’Ortenzio, and P. Lazzari (2021), Radiative Transfer Modeling With Biogeochemical-Argo Float Data in the Mediterranean Sea, Journal of Geophysical Research: Oceans, 126(10), e2021JC017690, doi: https://doi.org/10.1029/2021JC017690.

Terzić, E., S. Salon, G. Cossarini, C. Solidoro, A. Teruzzi, A. Miró, and P. Lazzari (2021), Impact of interannually variable diffuse attenuation coefficients for downwelling irradiance on biogeochemical modelling, Ocean Model., 161, 101793, doi: https://doi.org/10.1016/j.ocemod.2021.101793.

Udaya Bhaskar, T. V. S., V. V. S. S. Sarma, and J. Pavan Kumar (2021), Potential Mechanisms Responsible for Spatial Variability in Intensity and Thickness of Oxygen Minimum Zone in the Bay of Bengal, Journal of Geophysical Research: Biogeosciences, 126(6), e2021JG006341, doi: https://doi.org/10.1029/2021JG006341.

Ulses, C., C. Estournel, M. Fourrier, L. Coppola, F. Kessouri, D. Lefèvre, and P. Marsaleix (2021), Oxygen budget of the north-western Mediterranean deep- convection region, Biogeosciences, 18(3), 937-960, doi: https://doi.org/10.5194/bg-18-937-2021.

Valsala, V., M. G. Sreeush, M. Anju, P. Sreenivas, Y. K. Tiwari, K. Chakraborty, and S. Sijikumar (2021), An observing system simulation experiment for Indian Ocean surface pCO2 measurements, Prog. Oceanogr., 194, 102570, doi: https://doi.org/10.1016/j.pocean.2021.102570.

Vidya, P. J., M. Balaji, and R. Mani Murali (2021), Cyclone Hudhud-eddy induced phytoplankton bloom in the northern Bay of Bengal using a coupled model, Prog. Oceanogr., 197, 102631, doi: https://doi.org/10.1016/j.pocean.2021.102631.

Wang, B., K. Fennel, and L. Yu (2021), Can assimilation of satellite observations improve subsurface biological properties in a numerical model? A case study for the Gulf of Mexico, Ocean Sci., 17(4), 1141-1156, doi: https://doi.org/10.5194/os-17-1141-2021.

Wang, T., F. Chai, X. Xing, J. Ning, W. Jiang, and S. C. Riser (2021), Influence of multi-scale dynamics on the vertical nitrate distribution around the Kuroshio Extension: An investigation based on BGC-Argo and satellite data, Prog. Oceanogr., 193, 102543, doi: https://doi.org/10.1016/j.pocean.2021.102543.

Wilson, C. (2021), Evidence of Episodic Nitrate Injections in the Oligotrophic North Pacific Associated With Surface Chlorophyll Blooms, Journal of Geophysical Research: Oceans, 126(11), e2021JC017169, doi: https://doi.org/10.1029/2021JC017169.

Wimart-Rousseau, C., et al. (2021), Seasonal and Interannual Variability of the CO2 System in the Eastern Mediterranean Sea: A Case Study in the North Western Levantine Basin, Frontiers in Marine Science, 8(475), doi: https://doi.org/10.3389/fmars.2021.649246.

Wimart-Rousseau, C., et al. (2021), Seasonal and Interannual Variability of the CO2 System in the Eastern Mediterranean Sea: A Case Study in the North Western Levantine Basin, Frontiers in Marine Science, 8, doi: https://doi.org/10.3389/fmars.2021.649246.

Xing, X., and E. Boss (2021), Chlorophyll-Based Model to Estimate Underwater Photosynthetically Available Radiation for Modeling, In-Situ, and Remote-Sensing Applications, Geophys. Res. Lett., 48(7), e2020GL092189, doi: https://doi.org/10.1029/2020GL092189.

Xing, X., E. Boss, S. Chen, and F. Chai (2021), Seasonal and Daily-Scale Photoacclimation Modulating the Phytoplankton Chlorophyll-Carbon Coupling Relationship in the Mid-Latitude Northwest Pacific, Journal of Geophysical Research: Oceans, 126(10), e2021JC017717, doi: https://doi.org/10.1029/2021JC017717.

Xu, Y., Y. Wu, H. Wang, Z. Zhang, J. Li, and J. Zhang (2021), Seasonal and interannual variabilities of chlorophyll across the eastern equatorial Indian Ocean and Bay of Bengal, Prog. Oceanogr., 198, 102661, doi: https://doi.org/10.1016/j.pocean.2021.102661.

Yang, B. (2021), Seasonal Relationship Between Net Primary and Net Community Production in the Subtropical Gyres: Insights From Satellite and Argo Profiling Float Measurements, Geophys. Res. Lett., 48(17), e2021GL093837, doi: https://doi.org/10.1029/2021GL093837.

Yang, B., J. Fox, M. J. Behrenfeld, E. S. Boss, N. Haëntjens, K. H. Halsey, S. R. Emerson, and S. C. Doney (2021), In Situ Estimates of Net Primary Production in the Western North Atlantic With Argo Profiling Floats, Journal of Geophysical Research: Biogeosciences, 126(2), e2020JG006116, doi: https://doi.org/10.1029/2020JG006116.

Zhang, H.-R., Y. Wang, P. Xiu, Y. Qi, and F. Chai (2021), Roles of Iron Limitation in Phytoplankton Dynamics in the Western and Eastern Subarctic Pacific, Frontiers in Marine Science, 8(1269), doi: https://doi.org/10.3389/fmars.2021.735826.

Zhao, D., Y. Xu, X. Zhang, and C. Huang (2021), Global chlorophyll distribution induced by mesoscale eddies, Remote Sens. Environ., 254, 112245, doi: https://doi.org/10.1016/j.rse.2020.112245.

2020 (70)

Álvarez, M., N. M. Fajar, B. R. Carter, E. F. Guallart, F. F. Pérez, R. J. Woosley, and A. Murata (2020), Global Ocean Spectrophotometric pH Assessment: Consistent Inconsistencies, Environmental Science & Technology, 54(18), 10977-10988, doi: https://doi.org/10.1021/acs.est.9b06932.

André, X., et al. (2020), Preparing the New Phase of Argo: Technological Developments on Profiling Floats in the NAOS Project, Frontiers in Marine Science, 7(934), doi: https://doi.org/10.3389/fmars.2020.577446.

Anju, M., M. G. Sreeush, V. Valsala, B. R. Smitha, F. Hamza, G. Bharathi, and C. V. Naidu (2020), Understanding the Role of Nutrient Limitation on Plankton Biomass Over Arabian Sea Via 1-D Coupled Biogeochemical Model and Bio-Argo Observations, Journal of Geophysical Research: Oceans, 125(6), e2019JC015502, doi: https://doi.org/10.1029/2019JC015502.

Arteaga, L. A., E. Boss, M. J. Behrenfeld, T. K. Westberry, and J. L. Sarmiento (2020), Seasonal modulation of phytoplankton biomass in the Southern Ocean, Nature Communications, 11(1), 5364, doi: https://doi.org/10.1038/s41467-020-19157-2.

Atamanchuk, D., J. Koelling, U. Send, and D. W. R. Wallace (2020), Rapid transfer of oxygen to the deep ocean mediated by bubbles, Nat. Geosci., 13(3), 232-237, doi: https://doi.org/10.1038/s41561-020-0532-2.

Baetge, N., J. R. Graff, M. J. Behrenfeld, and C. A. Carlson (2020), Net Community Production, Dissolved Organic Carbon Accumulation, and Vertical Export in the Western North Atlantic, Frontiers in Marine Science, 7(227), doi: https://doi.org/10.3389/fmars.2020.00227.

Baldry, K., P. G. Strutton, N. A. Hill, and P. W. Boyd (2020), Subsurface Chlorophyll-a Maxima in the Southern Ocean, Frontiers in Marine Science, 7(671), doi: https://doi.org/10.3389/fmars.2020.00671.

Beadling, R. L., J. L. Russell, R. J. Stouffer, M. Mazloff, L. D. Talley, P. J. Goodman, J. B. Sallée, H. T. Hewitt, P. Hyder, and A. Pandde (2020), Representation of Southern Ocean Properties across Coupled Model Intercomparison Project Generations: CMIP3 to CMIP6, J. Clim., 33(15), 6555-6581, doi: https://doi.org/10.1175/JCLI-D-19-0970.1.

Behera, N., D. Swain, and S. Sil (2020), Effect of Antarctic sea ice on chlorophyll concentration in the Southern Ocean, Deep Sea Research Part II: Topical Studies in Oceanography, 178, 104853, doi: https://doi.org/10.1016/j.dsr2.2020.104853.

Briggs, N., G. Dall’Olmo, and H. Claustre (2020), Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans, Science, 367(6479), 791, doi: http://dx.doi.org/10.1126/science.aay1790.

Bronselaer, B., J. L. Russell, M. Winton, N. L. Williams, R. M. Key, J. P. Dunne, R. A. Feely, K. S. Johnson, and J. L. Sarmiento (2020), Importance of wind and meltwater for observed chemical and physical changes in the Southern Ocean, Nat. Geosci., 13(1), 35-42, doi: https://doi.org/10.1038/s41561-019-0502-8.

Carroll, D., et al. (2020), The ECCO-Darwin Data-Assimilative Global Ocean Biogeochemistry Model: Estimates of Seasonal to Multidecadal Surface Ocean pCO2 and Air-Sea CO2 Flux, Journal of Advances in Modeling Earth Systems, 12(10), e2019MS001888, doi: https://doi.org/10.1029/2019MS001888.

Chai, F., K. S. Johnson, H. Claustre, X. Xing, Y. Wang, E. Boss, S. Riser, K. Fennel, O. Schofield, and A. Sutton (2020), Monitoring ocean biogeochemistry with autonomous platforms, Nature Reviews Earth & Environment, 1(6), 315-326, doi: https://doi.org/10.1038/s43017-020-0053-y.

Chai, F., K. S. Johnson, H. Claustre, X. G. Xing, Y. T. Wang, E. Boss, S. Riser, K. Fennel, O. Schofield, and A. Sutton (2020), Monitoring ocean biogeochemistry with autonomous platforms, Nature Reviews Earth & Environment, 1(6), 315-326, doi: <Go to ISI>://WOS:000649447700008.

Chai, F., K. S. Johnson, H. Claustre, X. G. Xing, Y. T. Wang, E. Boss, S. Riser, K. Fennel, O. Schofield, and A. Sutton (2020), Monitoring ocean biogeochemistry with autonomous platforms, Nature Reviews Earth & Environment, 1(6), 315-326, doi: <Go to ISI>://WOS:000649447700008.

Chowdhury, R. R., S. Prasanna Kumar, and A. Chakraborty (2020), A study on the physical and biogeochemical responses of the Bay of Bengal due to cyclone Madi, J. Oper. Oceanogr., 1-22, doi: https://doi.org/10.1080/1755876X.2020.1817659.

Chowdhury, R. R., S. Prasanna Kumar, J. Narvekar, and A. Chakraborty (2020), Back-to-Back Occurrence of Tropical Cyclones in the Arabian Sea During October–November 2015: Causes and Responses, Journal of Geophysical Research: Oceans, 125(6), e2019JC015836, doi: https://doi.org/10.1029/2019JC015836.

Claustre, H., K. S. Johnson, and Y. Takeshita (2020), Observing the Global Ocean with Biogeochemical-Argo, Annual Review of Marine Science, 12(1), 23-48, doi: https://doi.org/10.1146/annurev-marine-010419-010956.

Claustre, H., K. S. Johnson, and Y. Takeshita (2020), Observing the Global Ocean with Biogeochemical-Argo, in Annual Review of Marine Science, Vol 12, edited by C. A. Carlson and S. J. Giovannoni, pp. 23-48, Annual Reviews, Palo Alto, doi: <Go to ISI>://WOS:000507475600002.

Claustre, H., K. S. Johnson, and Y. Takeshita (2020), Observing the Global Ocean with Biogeochemical-Argo, in Annual Review of Marine Science, Vol 12, edited by C. A. Carlson and S. J. Giovannoni, pp. 23-48, Annual Reviews, Palo Alto, doi: <Go to ISI>://WOS:000507475600002.

Cornec, M. (2020), Dynamic of Deep phytoplankton Maxima : a global approach using BioGeoChemical-Argo floats

La dynamique des Maxima profonds de phytoplancton : une approche globale avec les flotteurs BGC-Argo, Sorbonne Université https://tel.archives-ouvertes.fr/tel-03474181.

D’Ortenzio, F., V. Taillandier, H. Claustre, L. M. Prieur, E. Leymarie, A. Mignot, A. Poteau, C. Penkerc’h, and C. M. Schmechtig (2020), Biogeochemical Argo: The Test Case of the NAOS Mediterranean Array, Frontiers in Marine Science, 7(120), doi: https://doi.org/10.3389/fmars.2020.00120.

Demuynck, P., T. Tyrrell, A. Naveira Garabato, M. C. Moore, and A. P. Martin (2020), Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology, Biogeosciences, 17(8), 2289-2314, doi: https://doi.org/10.5194/bg-17-2289-2020.

Fan, G., Z. Han, W. Ma, S. Chen, F. Chai, M. R. Mazloff, J. Pan, and H. Zhang (2020), Southern Ocean carbon export efficiency in relation to temperature and primary productivity, Scientific Reports, 10(1), 13494, doi: https://doi.org/10.1038/s41598-020-70417-z.

Fourrier, M., L. Coppola, H. Claustre, F. D’Ortenzio, R. Sauzède, and J.-P. Gattuso (2020), A Regional Neural Network Approach to Estimate Water-Column Nutrient Concentrations and Carbonate System Variables in the Mediterranean Sea: CANYON-MED, Frontiers in Marine Science, 7, doi: https://doi.org/10.3389/fmars.2020.00620.

Fumenia, A., A. Petrenko, H. Loisel, K. Djaoudi, A. deVerneil, and T. Moutin (2020), Optical proxy for particulate organic nitrogen from BGC-Argo floats, Opt. Express, 28(15), 21391-21406, doi: https://doi.org/10.1364/OE.395648.

Gordon, C., K. Fennel, C. Richards, L. K. Shay, and J. K. Brewster (2020), Can ocean community production and respiration be determined by measuring high-frequency oxygen profiles from autonomous floats?, Biogeosciences, 17(15), 4119-4134, doi: https://doi.org/10.5194/bg-17-4119-2020.

Gu, Y., X. Cheng, Y. Qi, and G. Wang (2020), Characterizing the seasonality of vertical chlorophyll-a profiles in the Southwest Indian Ocean from the Bio-Argo floats, J. Mar. Syst., 212, 103426, doi: https://doi.org/10.1016/j.jmarsys.2020.103426.

Haëntjens, N., A. Della Penna, N. Briggs, L. Karp-Boss, P. Gaube, H. Claustre, and E. Boss (2020), Detecting Mesopelagic Organisms Using Biogeochemical-Argo Floats, Geophys. Res. Lett., 47(6), e2019GL086088, doi: https://doi.org/10.1029/2019GL086088.

Haskell Ii, W. Z., A. J. Fassbender, J. S. Long, and J. N. Plant (2020), Annual Net Community Production of Particulate and Dissolved Organic Carbon From a Decade of Biogeochemical Profiling Float Observations in the Northeast Pacific, Glob. Biogeochem. Cycle, 34(10), e2020GB006599, doi: https://doi.org/10.1029/2020GB006599.

Hayashida, H., G. Carnat, M. Galí, A. H. Monahan, E. Mortenson, T. Sou, and N. S. Steiner (2020), Spatiotemporal Variability in Modeled Bottom Ice and Sea Surface Dimethylsulfide Concentrations and Fluxes in the Arctic During 1979–2015, Glob. Biogeochem. Cycle, 34(10), e2019GB006456, doi: https://doi.org/10.1029/2019GB006456.

Jena, B., and A. N. Pillai (2020), Satellite observations of unprecedented phytoplankton blooms in the Maud Rise polynya, Southern Ocean, The Cryosphere, 14(4), 1385-1398, doi: https://doi.org/10.5194/tc-14-1385-2020.

Johnson, K. S., M. B. Bif, S. Bushinsky, A. J. Fassbender, and Y. Takeshita (2020), BioGeoChemical Argo in the State of the Climate in 2019, Bull. Am. Meteorol. Soc., 101(8), doi: https://doi.org/10.1175/2020BAMSStateoftheClimate.1.

Keppler, L., P. Landschützer, N. Gruber, S. K. Lauvset, and I. Stemmler (2020), Seasonal Carbon Dynamics in the Near-Global Ocean, Glob. Biogeochem. Cycle, 34(12), e2020GB006571, doi: https://doi.org/10.1029/2020GB006571.

Kheireddine, M., G. Dall’Olmo, M. Ouhssain, G. Krokos, H. Claustre, C. Schmechtig, A. Poteau, P. Zhan, I. Hoteit, and B. H. Jones (2020), Organic Carbon Export and Loss Rates in the Red Sea, Glob. Biogeochem. Cycle, 34(10), e2020GB006650, doi: https://doi.org/10.1029/2020GB006650.

Kubryakov, A. A., A. S. Mikaelyan, S. V. Stanichny, and E. A. Kubryakova (2020), Seasonal Stages of Chlorophyll-a Vertical Distribution and Its Relation to the Light Conditions in the Black Sea From Bio-Argo Measurements, Journal of Geophysical Research: Oceans, 125(12), e2020JC016790, doi: https://doi.org/10.1029/2020JC016790.

Lacour, L., R. Larouche, and M. Babin (2020), In situ evaluation of spaceborne CALIOP lidar measurements of the upper-ocean particle backscattering coefficient, Opt. Express, 28(18), 26989-26999, doi: https://doi.org/10.1364/OE.397126.

Lakshmi, R. S., A. Chatterjee, S. Prakash, and T. Mathew (2020), Biophysical Interactions in Driving the Summer Monsoon Chlorophyll Bloom Off the Somalia Coast, Journal of Geophysical Research: Oceans, 125(3), e2019JC015549, doi: https://doi.org/10.1029/2019JC015549.

Le Traon, P.-Y., et al. (2020), Preparing the New Phase of Argo: Scientific Achievements of the NAOS Project, Frontiers in Marine Science, 7(838), doi: https://doi.org/10.3389/fmars.2020.577408.

Martinez, E., M. Rodier, M. Pagano, and R. Sauzède (2020), Plankton spatial variability within the Marquesas archipelago, South Pacific, J. Mar. Syst., 212, 103432, doi: https://doi.org/10.1016/j.jmarsys.2020.103432.

Mayot, N., P. A. Matrai, A. Arjona, S. Bélanger, C. Marchese, T. Jaegler, M. Ardyna, and M. Steele (2020), Springtime Export of Arctic Sea Ice Influences Phytoplankton Production in the Greenland Sea, Journal of Geophysical Research: Oceans, 125(3), e2019JC015799, doi: https://doi.org/10.1029/2019JC015799.

Mikaelyan, A. S., S. A. Mosharov, A. A. Kubryakov, L. A. Pautova, A. Fedorov, and V. K. Chasovnikov (2020), The impact of physical processes on taxonomic composition, distribution and growth of phytoplankton in the open Black Sea, J. Mar. Syst., 208, 103368, doi: https://doi.org/10.1016/j.jmarsys.2020.103368.

Moreau, S., P. W. Boyd, and P. G. Strutton (2020), Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone, Nature Communications, 11(1), 3108, doi: https://doi.org/10.1038/s41467-020-16931-0.

Nimit, K., et al. (2020), Oceanographic preferences of yellowfin tuna (Thunnus albacares) in warm stratified oceans: A remote sensing approach, Int. J. Remote Sens., 41, 5785-5805, doi: https://doi.org/10.1080/01431161.2019.1707903.

Pellichero, V., J. Boutin, H. Claustre, L. Merlivat, J.-B. Sallée, and S. Blain (2020), Relaxation of Wind Stress Drives the Abrupt Onset of Biological Carbon Uptake in the Kerguelen Bloom: A Multisensor Approach, Geophys. Res. Lett., 47(9), e2019GL085992, doi: https://doi.org/10.1029/2019GL085992.

Prakash, P., S. Prakash, M. Ravichandran, T. V. S. U. Bhaskar, and N. A. Kumar (2020), Seasonal evolution of chlorophyll in the Indian sector of the Southern Ocean: Analyses of Bio-Argo measurements, Deep Sea Research Part II: Topical Studies in Oceanography, 178, 104791, doi: https://doi.org/10.1016/j.dsr2.2020.104791.

Pramanik, S., S. Sil, A. Gangopadhyay, M. K. Singh, and N. Behera (2020), Interannual variability of the Chlorophyll-a concentration over Sri Lankan Dome in the Bay of Bengal, Int. J. Remote Sens., 41(15), 5974-5991, doi: https://doi.org/10.1080/01431161.2020.1727057.

Quay, P., S. Emerson, and H. Palevsky (2020), Regional Pattern of the Ocean’s Biological Pump Based on Geochemical Observations, Geophys. Res. Lett., 47(14), e2020GL088098, doi: https://doi.org/10.1029/2020GL088098.

Rak, D., W. Walczowski, L. Dzierzbicka-Głowacka, and S. Shchuka (2020), Dissolved oxygen variability in the southern Baltic Sea in 2013–2018, Oceanologia, 62(4, Part A), 525-537, doi: https://doi.org/10.1016/j.oceano.2020.08.005.

Ramos-Musalem, K., and S. E. Allen (2020), The Impact of Initial Tracer Profile on the Exchange and On-Shelf Distribution of Tracers Induced by a Submarine Canyon, Journal of Geophysical Research: Oceans, 125(3), e2019JC015785, doi: https://doi.org/10.1029/2019JC015785.

Randelhoff, A., J. Holding, M. Janout, M. K. Sejr, M. Babin, J.-É. Tremblay, and M. B. Alkire (2020), Pan-Arctic Ocean Primary Production Constrained by Turbulent Nitrate Fluxes, Frontiers in Marine Science, 7(150), doi: https://doi.org/10.3389/fmars.2020.00150.

Randelhoff, A., et al. (2020), Arctic mid-winter phytoplankton growth revealed by autonomous profilers, Science Advances, 6(39), eabc2678, doi: https://doi.org/10.1126/sciadv.abc2678.

Rasse, R., H. Claustre, and A. Poteau (2020), The suspended small-particle layer in the oxygen-poor Black Sea: a proxy for delineating the effective N2-yielding section, Biogeosciences, 17(24), 6491-6505, doi: https://doi.org/10.5194/bg-17-6491-2020.

Rosso, I., M. R. Mazloff, L. D. Talley, S. G. Purkey, N. M. Freeman, and G. Maze (2020), Water Mass and Biogeochemical Variability in the Kerguelen Sector of the Southern Ocean: A Machine Learning Approach for a Mixing Hot Spot, Journal of Geophysical Research: Oceans, 125(3), e2019JC015877, doi: https://doi.org/10.1029/2019JC015877.

Sarma, V. V. S. S., T. V. S. U. Bhaskar, J. P. Kumar, and K. Chakraborty (2020), Potential mechanisms responsible for occurrence of core oxygen minimum zone in the north-eastern Arabian Sea, Deep Sea Research Part I: Oceanographic Research Papers, 165, 103393, doi: https://doi.org/10.1016/j.dsr.2020.103393.

Sauzède, R., et al. (2020), Enhancement of phytoplankton biomass leeward of Tahiti as observed by Biogeochemical-Argo floats, J. Mar. Syst., 204, 103284, doi: https://doi.org/10.1016/j.jmarsys.2019.103284.

Séférian, R., et al. (2020), Tracking Improvement in Simulated Marine Biogeochemistry Between CMIP5 and CMIP6, Curr Clim Change Rep, 6(3), 95-119, doi: https://doi.org/10.1007/s40641-020-00160-0.

Sergi, S., A. Baudena, C. Cotté, M. Ardyna, S. Blain, and F. d’Ovidio (2020), Interaction of the Antarctic Circumpolar Current With Seamounts Fuels Moderate Blooms but Vast Foraging Grounds for Multiple Marine Predators, Frontiers in Marine Science, 7(416), doi: https://doi.org/10.3389/fmars.2020.00416.

Shen, J., et al. (2020), Laterally Transported Particles From Margins Serve as a Major Carbon and Energy Source for Dark Ocean Ecosystems, Geophys. Res. Lett., 47(18), e2020GL088971, doi: https://doi.org/10.1029/2020GL088971.

Sridevi, B., and V. V. S. S. Sarma (2020), A revisit to the regulation of oxygen minimum zone in the Bay of Bengal, Journal of Earth System Science, 129(1), 107, doi: https://doi.org/10.1007/s12040-020-1376-2.

Sulpis, O., S. K. Lauvset, and M. Hagens (2020), Current estimates of K1* and K2* appear inconsistent with measured CO2 system parameters in cold oceanic regions, Ocean Sci., 16(4), 847-862, doi: https://doi.org/10.5194/os-16-847-2020.

Taillandier, V., L. Prieur, F. D’Ortenzio, M. Ribera d’Alcalà, and E. Pulido-Villena (2020), Profiling float observation of thermohaline staircases in the western Mediterranean Sea and impact on nutrient fluxes, Biogeosciences, 17(13), 3343-3366, doi: https://doi.org/10.5194/bg-17-3343-2020.

Terrats, L., H. Claustre, M. Cornec, A. Mangin, and G. Neukermans (2020), Detection of Coccolithophore Blooms With BioGeoChemical-Argo Floats, Geophys. Res. Lett., 47(23), e2020GL090559, doi: https://doi.org/10.1029/2020GL090559.

von Berg, L., C. J. Prend, E. C. Campbell, M. R. Mazloff, L. D. Talley, and S. T. Gille (2020), Weddell Sea Phytoplankton Blooms Modulated by Sea Ice Variability and Polynya Formation, Geophys. Res. Lett., 47(11), e2020GL087954, doi: https://doi.org/10.1029/2020GL087954.

Wang, B., K. Fennel, L. Yu, and C. Gordon (2020), Assessing the value of biogeochemical Argo profiles versus ocean color observations for biogeochemical model optimization in the Gulf of Mexico, Biogeosciences, 17(15), 4059-4074, doi: https://doi.org/10.5194/bg-17-4059-2020.

Wang, T., F. Chen, S. Zhang, J. Pan, A. T. Devlin, H. Ning, and W. Zeng (2020), Remote Sensing and Argo Float Observations Reveal Physical Processes Initiating a Winter-Spring Phytoplankton Bloom South of the Kuroshio Current Near Shikoku, Remote Sensing, 12(24), doi: https://doi.org/10.3390/rs12244065.

Watanabe, Y. W., B. F. Li, R. Yamasaki, S. Yunoki, K. Imai, S. Hosoda, and Y. Nakano (2020), Spatiotemporal changes of ocean carbon species in the western North Pacific using parameterization technique, J. Oceanogr., 76(2), 155-167, doi: https://doi.org/10.1007/s10872-019-00532-7.

Wojtasiewicz, B., T. W. Trull, T. V. S. Udaya Bhaskar, M. Gauns, S. Prakash, M. Ravichandran, D. M. Shenoy, D. Slawinski, and N. J. Hardman-Mountford (2020), Autonomous profiling float observations reveal the dynamics of deep biomass distributions in the denitrifying oxygen minimum zone of the Arabian Sea, J. Mar. Syst., 207, 103103, doi: https://doi.org/10.1016/j.jmarsys.2018.07.002.

Wu, Y. (2020), Investigation of surface ocean carbon distribution using large global dataset, University of Southampton http://eprints.soton.ac.uk/id/eprint/437856.

Xing, X., E. Boss, J. Zhang, and F. Chai (2020), Evaluation of Ocean Color Remote Sensing Algorithms for Diffuse Attenuation Coefficients and Optical Depths with Data Collected on BGC-Argo Floats, Remote Sensing, 12(15), 2367, doi: https://doi.org/10.3390/rs12152367.

Xing, X., M. L. Wells, S. Chen, S. Lin, and F. Chai (2020), Enhanced Winter Carbon Export Observed by BGC-Argo in the Northwest Pacific Ocean, Geophys. Res. Lett., 47(22), e2020GL089847, doi: https://doi.org/10.1029/2020GL089847.

Xiu, P., and F. Chai (2020), Eddies Affect Subsurface Phytoplankton and Oxygen Distributions in the North Pacific Subtropical Gyre, Geophys. Res. Lett., 47(15), e2020GL087037, doi: https://doi.org/10.1029/2020GL087037.

Yang, B., E. S. Boss, N. Haëntjens, M. C. Long, M. J. Behrenfeld, R. Eveleth, and S. C. Doney (2020), Phytoplankton Phenology in the North Atlantic: Insights From Profiling Float Measurements, Frontiers in Marine Science, 7, doi: https://doi.org/10.3389/fmars.2020.00139.

Zhang, X., L. Hu, Y. Xiong, Y. Huot, and D. Gray (2020), Experimental Estimates of Optical Backscattering Associated With Submicron Particles in Clear Oceanic Waters, Geophys. Res. Lett., 47(4), e2020GL087100, doi: https://doi.org/10.1029/2020GL087100.

2019 (77)

Ardyna, M., et al. (2019), Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean, Nature Communications, 10(1), 2451, doi: https://doi.org/10.1038/s41467-019-09973-6.

Arteaga, L. A., M. Pahlow, S. M. Bushinsky, and J. L. Sarmiento (2019), Nutrient Controls on Export Production in the Southern Ocean, Glob. Biogeochem. Cycle, 33(8), 942-956, doi: https://doi.org/10.1029/2019GB006236.

Barbieux, M. (2019), Étude des relations bio-optiques dans l’océan global et du fonctionnement biogéochimique des maxima de subsurface de chlorophylle en Méditerranée à partir des mesures des flotteurs profileurs BGC-Argo http://www.theses.fr/2019SORUS490/document.

Barbieux, M., et al. (2019), Bio-optical characterization of subsurface chlorophyll maxima in the Mediterranean Sea from a Biogeochemical-Argo float database, Biogeosciences, 16(6), 1321-1342, doi: https://doi.org/10.5194/bg-16-1321-2019.

Bellacicco, M., et al. (2019), Global Variability of Optical Backscattering by Non-algal particles From a Biogeochemical-Argo Data Set, Geophys. Res. Lett., 46(16), 9767-9776, doi: https://doi.org/10.1029/2019GL084078.

Bellacicco, M., V. Vellucci, M. Scardi, M. Barbieux, S. Marullo, and F. D’Ortenzio (2019), Quantifying the Impact of Linear Regression Model in Deriving Bio-Optical Relationships: The Implications on Ocean Carbon Estimations, Sensors, 19(13), 3032, doi: https://doi.org/10.3390/s19133032.

Bernardi Bif, M. (2019), Understanding Resistant Organic Carbon in the Ocean: From Microbes to Large-Scale Processes, University of Miami https://scholarlyrepository.miami.edu/oa_dissertations/2322.

Bif, M. B., and D. A. Hansell (2019), Seasonality of Dissolved Organic Carbon in the Upper Northeast Pacific Ocean, Glob. Biogeochem. Cycle, 33(5), 526-539, doi: https://doi.org/10.1029/2018GB006152.

Bif, M. B., L. Siqueira, and D. A. Hansell (2019), Warm Events Induce Loss of Resilience in Organic Carbon Production in the Northeast Pacific Ocean, Glob. Biogeochem. Cycle, 33(9), 1174-1186, doi: https://doi.org/10.1029/2019GB006327.

Bisson, K. M., E. Boss, T. K. Westberry, and M. J. Behrenfeld (2019), Evaluating satellite estimates of particulate backscatter in the global open ocean using autonomous profiling floats, Opt. Express, 27(21), 30191-30203, doi: https://doi.org/10.1364/OE.27.030191.

Bittig, H. C., et al. (2019), A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage, Frontiers in Marine Science, 6(502), doi: https://doi.org/10.3389/fmars.2019.00502.

Boyd, P. W., H. Claustre, M. Levy, D. A. Siegel, and T. Weber (2019), Multi-faceted particle pumps drive carbon sequestration in the ocean, Nature, 568(7752), 327-335, doi: https://doi.org/10.1038/s41586-019-1098-2.

Bushinsky, S. M., P. Landschützer, C. Rödenbeck, A. R. Gray, D. Baker, M. R. Mazloff, L. Resplandy, K. S. Johnson, and J. L. Sarmiento (2019), Reassessing Southern Ocean Air-Sea CO2 Flux Estimates With the Addition of Biogeochemical Float Observations, Glob. Biogeochem. Cycle, 33(11), 1370-1388, doi: https://doi.org/10.1029/2019GB006176.

Bushinsky, S. M., Y. Takeshita, and N. L. Williams (2019), Observing Changes in Ocean Carbonate Chemistry: Our Autonomous Future, Curr Clim Change Rep, 5(3), 207-220, doi: https://doi.org/10.1007/s40641-019-00129-8.

Callieri, C., et al. (2019), The mesopelagic anoxic Black Sea as an unexpected habitat for Synechococcus challenges our understanding of global “deep red fluorescence”, The ISME Journal, 13(7), 1676-1687, doi: https://doi.org/10.1038/s41396-019-0378-z.

Campbell, E. C., E. A. Wilson, G. W. K. Moore, S. C. Riser, C. E. Brayton, M. R. Mazloff, and L. D. Talley (2019), Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies, Nature, 570(7761), 319-325, doi: https://doi.org/10.1038/s41586-019-1294-0.

Caputi, L., et al. (2019), Community-Level Responses to Iron Availability in Open Ocean Plankton Ecosystems, Glob. Biogeochem. Cycle, 33(3), 391-419, doi: https://doi.org/10.1029/2018GB006022.

Chacko, N. (2019), Differential chlorophyll blooms induced by tropical cyclones and their relation to cyclone characteristics and ocean pre-conditions in the Indian Ocean, Journal of Earth System Science, 128(7), 177, doi: https://doi.org/10.1007/s12040-019-1207-5.

Chakraborty, K., N. Kumar, M. S. Girishkumar, G. V. M. Gupta, J. Ghosh, T. V. S. Udaya Bhaskar, and V. P. Thangaprakash (2019), Assessment of the impact of spatial resolution on ROMS simulated upper-ocean biogeochemistry of the Arabian Sea from an operational perspective, J. Oper. Oceanogr., 1-27, doi: https://doi.org/10.1080/1755876X.2019.1588697.

Chakraborty, K., et al. (2019), Assessment of model-simulated upper ocean biogeochemical dynamics of the Bay of Bengal, Journal of Sea Research, 146, 63-76, doi: https://doi.org/10.1016/j.seares.2019.01.001.

Chen, S., C. Xue, T. Zhang, L. Hu, G. Chen, and J. Tang (2019), Analysis of the Optimal Wavelength for Oceanographic Lidar at the Global Scale Based on the Inherent Optical Properties of Water, Remote Sensing, 11(22), 2705, doi: https://doi.org/10.3390/rs11222705.

Chow, C. H., W. Cheah, J.-H. Tai, and S.-F. Liu (2019), Anomalous wind triggered the largest phytoplankton bloom in the oligotrophic North Pacific Subtropical Gyre, Scientific Reports, 9(1), 15550, doi: https://doi.org/10.1038/s41598-019-51989-x.

Ciavatta, S., et al. (2019), Ecoregions in the Mediterranean Sea Through the Reanalysis of Phytoplankton Functional Types and Carbon Fluxes, Journal of Geophysical Research: Oceans, 124(10), 6737-6759, doi: https://doi.org/10.1029/2019JC015128.

Cossarini, G., L. Mariotti, L. Feudale, A. Mignot, S. Salon, V. Taillandier, A. Teruzzi, and F. D’Ortenzio (2019), Towards operational 3D-Var assimilation of chlorophyll Biogeochemical-Argo float data into a biogeochemical model of the Mediterranean Sea, Ocean Model., 133, 112-128, doi: https://doi.org/10.1016/j.ocemod.2018.11.005.

Emerson, S., B. Yang, M. White, and M. Cronin (2019), Air-Sea Gas Transfer: Determining Bubble Fluxes With In Situ N2 Observations, Journal of Geophysical Research: Oceans, 124(4), 2716-2727, doi: https://doi.org/10.1029/2018JC014786.

Fennel, K., et al. (2019), Advancing Marine Biogeochemical and Ecosystem Reanalyses and Forecasts as Tools for Monitoring and Managing Ecosystem Health, Frontiers in Marine Science, 6(89), doi: https://doi.org/10.3389/fmars.2019.00089.

Foltz, G. R., et al. (2019), The Tropical Atlantic Observing System, Frontiers in Marine Science, 6(206), doi: https://doi.org/10.3389/fmars.2019.00206.

Freeman, N. M., D. R. Munro, J. Sprintall, M. R. Mazloff, S. Purkey, I. Rosso, C. A. DeRanek, and C. Sweeney (2019), The Observed Seasonal Cycle of Macronutrients in Drake Passage: Relationship to Fronts and Utility as a Model Metric, Journal of Geophysical Research: Oceans, 124(7), 4763-4783, doi: https://doi.org/10.1029/2019JC015052.

Fujii, Y., et al. (2019), Observing System Evaluation Based on Ocean Data Assimilation and Prediction Systems: On-Going Challenges and a Future Vision for Designing and Supporting Ocean Observational Networks, Frontiers in Marine Science, 6(417), doi: https://doi.org/10.3389/fmars.2019.00417.

Germineaud, C., J.-M. Brankart, and P. Brasseur (2019), An Ensemble-Based Probabilistic Score Approach to Compare Observation Scenarios: An Application to Biogeochemical-Argo Deployments, J. Atmos. Ocean. Technol., 36(12), 2307-2326, doi: https://doi.org/10.1175/JTECH-D-19-0002.1.

Girishkumar, M. S., et al. (2019), Quantifying Tropical Cyclone’s Effect on the Biogeochemical Processes Using Profiling Float Observations in the Bay of Bengal, Journal of Geophysical Research: Oceans, 124(3), 1945-1963, doi: https://doi.org/10.1029/2017JC013629.

Gittings, J. A., D. E. Raitsos, M. Kheireddine, M.-F. Racault, H. Claustre, and I. Hoteit (2019), Evaluating tropical phytoplankton phenology metrics using contemporary tools, Scientific Reports, 9(1), 674, doi: https://doi.org/10.1038/s41598-018-37370-4.

Gouveia, N. A., D. F. M. Gherardi, F. H. Wagner, E. T. Paes, V. J. Coles, and L. E. O. C. Aragão (2019), The Salinity Structure of the Amazon River Plume Drives Spatiotemporal Variation of Oceanic Primary Productivity, Journal of Geophysical Research: Biogeosciences, 124(1), 147-165, doi: https://doi.org/10.1029/2018JG004665.

Groom, S., et al. (2019), Satellite Ocean Colour: Current Status and Future Perspective, Frontiers in Marine Science, 6(485), doi: https://doi.org/10.3389/fmars.2019.00485.

Gutknecht, E., G. Reffray, A. Mignot, T. Dabrowski, and M. G. Sotillo (2019), Modelling the marine ecosystem of Iberia–Biscay–Ireland (IBI) European waters for CMEMS operational applications, Ocean Sci., 15(6), 1489-1516, doi: https://doi.org/10.5194/os-15-1489-2019.

Hermes, J. C., et al. (2019), A Sustained Ocean Observing System in the Indian Ocean for Climate Related Scientific Knowledge and Societal Needs, Frontiers in Marine Science, 6(355), doi: https://doi.org/10.3389/fmars.2019.00355.

Hu, L., X. Zhang, and M. J. Perry (2019), Light scattering by pure seawater: Effect of pressure, Deep Sea Research Part I: Oceanographic Research Papers, 146, 103-109, doi: https://doi.org/10.1016/j.dsr.2019.03.009.

Jayaram, C., T. V. S. Udaya Bhaskar, J. P. Kumar, and D. Swain (2019), Cyclone Enhanced Chlorophyll in the Bay of Bengal as Evidenced from Satellite and BGC-Argo Float Observations, Journal of the Indian Society of Remote Sensing, 47(11), 1875-1882, doi: https://doi.org/10.1007/s12524-019-01034-1.

Johnson, K. S., S. C. Riser, and M. Ravichandran (2019), Oxygen Variability Controls Denitrification in the Bay of Bengal Oxygen Minimum Zone, Geophys. Res. Lett., 46(2), 804-811, doi: https://doi.org/10.1029/2018GL079881.

Kubryakov, A. A., A. S. Mikaelyan, and S. V. Stanichny (2019), Summer and winter coccolithophore blooms in the Black Sea and their impact on production of dissolved organic matter from Bio-Argo data, J. Mar. Syst., 199, 103220, doi: https://doi.org/10.1016/j.jmarsys.2019.103220.

Kubryakov, A. A., A. G. Zatsepin, and S. V. Stanichny (2019), Anomalous summer-autumn phytoplankton bloom in 2015 in the Black Sea caused by several strong wind events, J. Mar. Syst., 194, 11-24, doi: https://doi.org/10.1016/j.jmarsys.2019.02.004.

Lacour, L., N. Briggs, H. Claustre, M. Ardyna, and G. Dall’Olmo (2019), The Intraseasonal Dynamics of the Mixed Layer Pump in the Subpolar North Atlantic Ocean: A Biogeochemical-Argo Float Approach, Glob. Biogeochem. Cycle, 33(3), 266-281, doi: https://doi.org/10.1029/2018GB005997.

Le Traon, P. Y., et al. (2019), From Observation to Information and Users: The Copernicus Marine Service Perspective, Frontiers in Marine Science, 6(234), doi: https://doi.org/10.3389/fmars.2019.00234.

Levin, L. A., et al. (2019), Global Observing Needs in the Deep Ocean, Frontiers in Marine Science, 6(241), doi: https://doi.org/10.3389/fmars.2019.00241.

Li, B. F., Y. W. Watanabe, S. Hosoda, K. Sato, and Y. Nakano (2019), Quasi-Real-Time and High-Resolution Spatiotemporal Distribution of Ocean Anthropogenic CO2, Geophys. Res. Lett., 46(9), 4836-4843, doi: https://doi.org/10.1029/2018GL081639.

Liu, C., L. Xu, S.-P. Xie, and P. Li (2019), Effects of Anticyclonic Eddies on the Multicore Structure of the North Pacific Subtropical Mode Water Based on Argo Observations, Journal of Geophysical Research: Oceans, 124(11), 8400-8413, doi: https://doi.org/10.1029/2019JC015631.

Lombard, F., et al. (2019), Globally Consistent Quantitative Observations of Planktonic Ecosystems, Frontiers in Marine Science, 6(196), doi: https://doi.org/10.3389/fmars.2019.00196.

Maneesha, K., D. H. Prasad, and K. V. K. R. K. Patnaik (2019), Biophysical responses to tropical cyclone Hudhud over the Bay of Bengal, J. Oper. Oceanogr., 1-11, doi: https://doi.org/10.1080/1755876X.2019.1684135.

Mao, H., M. Feng, H. E. Phillips, and S. Lian (2019), Mesoscale eddy characteristics in the interior subtropical southeast Indian Ocean, tracked from the Leeuwin Current system, Deep Sea Research Part II: Topical Studies in Oceanography, 161, 52-62, doi: https://doi.org/10.1016/j.dsr2.2018.07.003.

Marchese, C., L. Castro de la Guardia, P. G. Myers, and S. Bélanger (2019), Regional differences and inter-annual variability in the timing of surface phytoplankton blooms in the Labrador Sea, Ecological Indicators, 96, 81-90, doi: https://doi.org/10.1016/j.ecolind.2018.08.053.

Margolskee, A., H. Frenzel, S. Emerson, and C. Deutsch (2019), Ventilation Pathways for the North Pacific Oxygen Deficient Zone, Glob. Biogeochem. Cycle, 33(7), 875-890, doi: https://doi.org/10.1029/2018GB006149.

Meijers, A., J. B. Sallee, A. Grey, K. Johnson, K. Arrigo, S. Swart, B. King, and M. Mazloff (2019), Southern Ocean in the State of the Climate in 2018, Bull. Am. Meteorol. Soc., 100, doi: http://dx.doi.org/10.1175/2019BAMSStateoftheClimate.1.

Meijers, A., J. B. Sallee, A. Grey, K. Johnson, K. R. arrigo, S. Swart, B. King, M. P. Meredith, and M. Mazloff (2019), Antarctica and the Southern Ocean: Southern Ocean in the State of the Climate in 2018, Bull. Am. Meteorol. Soc., 100(9), S181-S184, doi: https://doi.org/10.1175/2019BAMSStateoftheClimate.1.

Mignot, A., F. D’Ortenzio, V. Taillandier, G. Cossarini, and S. Salon (2019), Quantifying Observational Errors in Biogeochemical-Argo Oxygen, Nitrate, and Chlorophyll a Concentrations, Geophys. Res. Lett., 46(8), 4330-4337, doi: https://doi.org/10.1029/2018GL080541.

Moltmann, T., et al. (2019), A Global Ocean Observing System (GOOS), Delivered Through Enhanced Collaboration Across Regions, Communities, and New Technologies, Frontiers in Marine Science, 6(291), doi: https://doi.org/10.3389/fmars.2019.00291.

Newman, L., et al. (2019), Delivering Sustained, Coordinated, and Integrated Observations of the Southern Ocean for Global Impact, Frontiers in Marine Science, 6(433), doi: https://doi.org/10.3389/fmars.2019.00433.

Organelli, E., and H. Claustre (2019), Small Phytoplankton Shapes Colored Dissolved Organic Matter Dynamics in the North Atlantic Subtropical Gyre, Geophys. Res. Lett., 46(21), 12183-12191, doi: https://doi.org/10.1029/2019GL084699.

Pearlman, J., et al. (2019), Evolving and Sustaining Ocean Best Practices and Standards for the Next Decade, Frontiers in Marine Science, 6(277), doi: https://doi.org/10.3389/fmars.2019.00277.

Prants, S. V., A. G. Andreev, M. Y. Uleysky, and M. V. Budyansky (2019), Lagrangian study of mesoscale circulation in the Alaskan Stream area and the eastern Bering Sea, Deep Sea Research Part II: Topical Studies in Oceanography, 169-170, 104560, doi: https://doi.org/10.1016/j.dsr2.2019.03.005.

Prend, C. J., S. T. Gille, L. D. Talley, B. G. Mitchell, I. Rosso, and M. R. Mazloff (2019), Physical Drivers of Phytoplankton Bloom Initiation in the Southern Ocean’s Scotia Sea, Journal of Geophysical Research: Oceans, 124(8), 5811-5826, doi: https://doi.org/10.1029/2019JC015162.

Rasse, R., and G. Dall’Olmo (2019), Do Oceanic Hypoxic Regions Act as Barriers for Sinking Particles? A Case Study in the Eastern Tropical North Atlantic, Glob. Biogeochem. Cycle, 33(12), 1611-1630, doi: https://doi.org/10.1029/2019GB006305.

Roemmich, D., et al. (2019), On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array, Frontiers in Marine Science, 6(439), doi: https://doi.org/10.3389/fmars.2019.00439.

Salon, S., G. Cossarini, G. Bolzon, L. Feudale, P. Lazzari, A. Teruzzi, C. Solidoro, and A. Crise (2019), Novel metrics based on Biogeochemical Argo data to improve the model uncertainty evaluation of the CMEMS Mediterranean marine ecosystem forecasts, Ocean Sci., 15(4), 997-1022, doi: https://doi.org/10.5194/os-15-997-2019.

Siiriä, S., P. Roiha, L. Tuomi, T. Purokoski, N. Haavisto, and P. Alenius (2019), Applying area-locked, shallow water Argo floats in Baltic Sea monitoring, J. Oper. Oceanogr., 12(1), doi: https://doi.org/10.1080/1755876X.2018.1544783.

Sloyan, B. M., et al. (2019), The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP): A Platform for Integrated Multidisciplinary Ocean Science, Frontiers in Marine Science, 6(445), doi: https://doi.org/10.3389/fmars.2019.00445.

Smith, N., et al. (2019), Tropical Pacific Observing System, Frontiers in Marine Science, 6(31), doi: https://doi.org/10.3389/fmars.2019.00031.

Talley, L. D., et al. (2019), Southern Ocean Biogeochemical Float Deployment Strategy, With Example From the Greenwich Meridian Line (GO-SHIP A12), Journal of Geophysical Research: Oceans, 124(1), 403-431, doi: https://doi.org/10.1029/2018JC014059.

Terzić, E., P. Lazzari, E. Organelli, C. Solidoro, S. Salon, F. D’Ortenzio, and P. Conan (2019), Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry, Biogeosciences, 16(12), 2527-2542, doi: https://doi.org/10.5194/bg-16-2527-2019.

Tilbrook, B., et al. (2019), An Enhanced Ocean Acidification Observing Network: From People to Technology to Data Synthesis and Information Exchange, Frontiers in Marine Science, 6(337), doi: https://doi.org/10.3389/fmars.2019.00337.

Tintoré, J., et al. (2019), Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea, Frontiers in Marine Science, 6(568), doi: https://doi.org/10.3389/fmars.2019.00568.

Uchida, T. (2019), Seasonality in surface (sub)mesoscale turbulence and its impact on iron transport and primary production, Columbia University https://search.proquest.com/docview/2312585871?accountid=14524.

Uchida, T., D. Balwada, R. Abernathey, G. McKinley, S. Smith, and M. Lévy (2019), The Contribution of Submesoscale over Mesoscale Eddy Iron Transport in the Open Southern Ocean, Journal of Advances in Modeling Earth Systems, 11(12), 3934-3958, doi: https://doi.org/10.1029/2019MS001805.

Uchida, T., D. Balwada, R. Abernathey, C. J. Prend, E. Boss, and S. T. Gille (2019), Southern Ocean Phytoplankton Blooms Observed by Biogeochemical Floats, Journal of Geophysical Research: Oceans, 124(11), 7328-7343, doi: https://doi.org/10.1029/2019JC015355.

Wang, Z. A., et al. (2019), Advancing Observation of Ocean Biogeochemistry, Biology, and Ecosystems With Cost-Effective in situ Sensing Technologies, Frontiers in Marine Science, 6(519), doi: https://doi.org/10.3389/fmars.2019.00519.

Wilson, E. A. (2019), Sea ice and upper ocean variability in the southern ocean, University of Washington https://search.proquest.com/docview/2292188682?accountid=14524.

Xu, H., D. Tang, J. Sheng, Y. Liu, and Y. Sui (2019), Study of dissolved oxygen responses to tropical cyclones in the Bay of Bengal based on Argo and satellite observations, Science of The Total Environment, 659, 912-922, doi: https://doi.org/10.1016/j.scitotenv.2018.12.384.

Yang, B., S. R. Emerson, and P. D. Quay (2019), The Subtropical Ocean’s Biological Carbon Pump Determined From O2 and DIC/DI13C Tracers, Geophys. Res. Lett., 46(10), 5361-5368, doi: https://doi.org/10.1029/2018GL081239.

2018 (45)

Arteaga, L., N. Haëntjens, E. Boss, K. S. Johnson, and J. L. Sarmiento (2018), Assessment of Export Efficiency Equations in the Southern Ocean Applied to Satellite-Based Net Primary Production, Journal of Geophysical Research: Oceans, 123(4), 2945-2964, doi: https://doi.org/10.1002/2018JC013787.

Barbieux, M., et al. (2018), Assessing the Variability in the Relationship Between the Particulate Backscattering Coefficient and the Chlorophyll a Concentration From a Global Biogeochemical‐Argo Database, Journal of Geophysical Research: Oceans, 123(2), 1229-1250, doi: https://doi.org/10.1002/2017JC013030.

Barbot, S., A. Petrenko, and C. Maes (2018), Intermediate water flows in the western South Pacific: as revealed by individual Argo floats trajectories and a model re-analysis, Biogeosciences, 15(13), 4103-4124, doi: https://doi.org/10.5194/bg-15-4103-2018.

Bittig, H. C., A. Körtzinger, C. Neill, E. van Ooijen, J. N. Plant, J. Hahn, K. S. Johnson, B. Yang, and S. R. Emerson (2018), Oxygen Optode Sensors: Principle, Characterization, Calibration, and Application in the Ocean, Frontiers in Marine Science, 4(429), doi: https://doi.org/10.3389/fmars.2017.00429.

Bittig, H. C., T. Steinhoff, H. Claustre, B. Fiedler, N. L. Williams, R. Sauzède, A. Körtzinger, and J.-P. Gattuso (2018), An Alternative to Static Climatologies: Robust Estimation of Open Ocean CO2 Variables and Nutrient Concentrations From T, S, and O2 Data Using Bayesian Neural Networks, Frontiers in Marine Science, 5(328), doi: https://doi.org/10.3389/fmars.2018.00328.

Briggs, E. M., T. R. Martz, L. D. Talley, M. R. Mazloff, and K. S. Johnson (2018), Physical and Biological Drivers of Biogeochemical Tracers Within the Seasonal Sea Ice Zone of the Southern Ocean From Profiling Floats, Journal of Geophysical Research: Oceans, 123(2), 746-758, doi: https://doi.org/10.1002/2017JC012846.

Burt, W. J., and P. D. Tortell (2018), Observations of Zooplankton Diel Vertical Migration From High-Resolution Surface Ocean Optical Measurements, Geophys. Res. Lett., 45(24), 13,396-313,404, doi: https://doi.org/10.1029/2018GL079992.

Burt, W. J., T. K. Westberry, M. J. Behrenfeld, C. Zeng, R. W. Izett, and P. D. Tortell (2018), Carbon: Chlorophyll Ratios and Net Primary Productivity of Subarctic Pacific Surface Waters Derived From Autonomous Shipboard Sensors, Glob. Biogeochem. Cycle, 32(2), 267-288, doi: https://doi.org/10.1002/2017GB005783.

Bushinsky, S. M., and S. R. Emerson (2018), Biological and physical controls on the oxygen cycle in the Kuroshio Extension from an array of profiling floats, Deep Sea Research Part I: Oceanographic Research Papers, 141, 51-70, doi: https://doi.org/10.1016/j.dsr.2018.09.005.

Carranza, M. M., S. T. Gille, P. J. S. Franks, K. S. Johnson, R. Pinkel, and J. B. Girton (2018), When Mixed Layers Are Not Mixed. Storm-Driven Mixing and Bio-optical Vertical Gradients in Mixed Layers of the Southern Ocean, Journal of Geophysical Research: Oceans, 123(10), 7264-7289, doi: https://doi.org/10.1029/2018JC014416.

Chakraborty, K., V. Valsala, G. V. M. Gupta, and V. V. S. S. Sarma (2018), Dominant Biological Control Over Upwelling on pCO2 in Sea East of Sri Lanka, Journal of Geophysical Research: Biogeosciences, 123(10), 3250-3261, doi: https://doi.org/10.1029/2018JG004446.

Conan, P., P. Testor, C. Estournel, F. D’Ortenzio, M. Pujo-Pay, and X. Durrieu de Madron (2018), Preface to the Special Section: Dense Water Formations in the Northwestern Mediterranean: From the Physical Forcings to the Biogeochemical Consequences, Journal of Geophysical Research: Oceans, 123(10), 6983-6995, doi: https://doi.org/10.1029/2018JC014301.

Czeschel, R., F. Schütte, R. A. Weller, and L. Stramma (2018), Transport, properties, and life cycles of mesoscale eddies in the eastern tropical South Pacific, Ocean Sci., 14(4), 731-750, doi: https://doi.org/10.5194/os-14-731-2018.

Damien, P., O. Pasqueron de Fommervault, J. Sheinbaum, J. Jouanno, V. F. Camacho-Ibar, and O. Duteil (2018), Partitioning of the Open Waters of the Gulf of Mexico Based on the Seasonal and Interannual Variability of Chlorophyll Concentration, Journal of Geophysical Research: Oceans, 123(4), 2592-2614, doi: https://doi.org/10.1002/2017JC013456.

de Souza, A. G. Q., R. Kerr, and J. L. L. d. Azevedo (2018), On the influence of Subtropical Mode Water on the South Atlantic Ocean, J. Mar. Syst., 185, 13-24, doi: https://doi.org/10.1016/j.jmarsys.2018.04.006.

Fawcett, S. E., K. S. Johnson, S. C. Riser, N. Van Oostende, and D. M. Sigman (2018), Low-nutrient organic matter in the Sargasso Sea thermocline: A hypothesis for its role, identity, and carbon cycle implications, Marine Chemistry, 207, 108-123, doi: https://doi.org/10.1016/j.marchem.2018.10.008.

Fay, A. R., N. S. Lovenduski, G. A. McKinley, D. R. Munro, C. Sweeney, A. R. Gray, P. Landschützer, B. B. Stephens, T. Takahashi, and N. Williams (2018), Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2, Biogeosciences, 15(12), 3841-3855, doi: https://doi.org/10.5194/bg-15-3841-2018.

Giglio, D., V. Lyubchich, and M. R. Mazloff (2018), Estimating Oxygen in the Southern Ocean Using Argo Temperature and Salinity, Journal of Geophysical Research: Oceans, 123(6), 4280-4297, doi: https://doi.org/10.1029/2017JC013404.

Gray, A. R., K. S. Johnson, S. M. Bushinsky, S. C. Riser, J. L. Russell, L. D. Talley, R. Wanninkhof, N. L. Williams, and J. L. Sarmiento (2018), Autonomous Biogeochemical Floats Detect Significant Carbon Dioxide Outgassing in the High-Latitude Southern Ocean, Geophys. Res. Lett., 45(17), 9049-9057, doi: https://doi.org/10.1029/2018GL078013.

Hu, Q., K. Qu, H. Gao, Z. Cui, Y. Gao, and X. Yao (2018), Large Increases in Primary Trimethylaminium and Secondary Dimethylaminium in Atmospheric Particles Associated With Cyclonic Eddies in the Northwest Pacific Ocean, Journal of Geophysical Research: Atmospheres, 123(21), 12,133-112,146, doi: https://doi.org/10.1029/2018JD028836.

Lauvset, S. K., A. Brakstad, K. Våge, A. Olsen, E. Jeansson, and K. A. Mork (2018), Continued warming, salinification and oxygenation of the Greenland Sea gyre, Tellus A: Dynamic Meteorology and Oceanography, 70(1), 1-9, doi: https://doi.org/10.1080/16000870.2018.1476434.

Leymarie, E., C. Penkerc’h, V. Vellucci, C. Lerebourg, D. Antoine, E. Boss, M. R. Lewis, F. D’Ortenzio, and H. Claustre (2018), ProVal: A New Autonomous Profiling Float for High Quality Radiometric Measurements, Frontiers in Marine Science, 5(437), doi: https://doi.org/10.3389/fmars.2018.00437.

Liang, Y.-C., M. R. Mazloff, I. Rosso, S.-W. Fang, and J.-Y. Yu (2018), A Multivariate Empirical Orthogonal Function Method to Construct Nitrate Maps in the Southern Ocean, J. Atmos. Ocean. Technol., 35(7), 1505-1519, doi: https://doi.org/10.1175/JTECH-D-18-0018.1.

Llort, J., C. Langlais, R. Matear, S. Moreau, A. Lenton, and P. G. Strutton (2018), Evaluating Southern Ocean Carbon Eddy‐Pump From Biogeochemical‐Argo Floats, Journal of Geophysical Research: Oceans, 123(2), 971-984, doi: https://doi.org/10.1002/2017JC012861.

Lotliker, A. A., S. K. Baliarsingh, V. L. Trainer, M. L. Wells, C. Wilson, T. V. S. Udaya Bhaskar, A. Samanta, and S. R. Shahimol (2018), Characterization of oceanic Noctiluca blooms not associated with hypoxia in the Northeastern Arabian Sea, Harmful Algae, 74, 46-57, doi: https://doi.org/10.1016/j.hal.2018.03.008.

Mayot, N., P. Matrai, I. H. Ellingsen, M. Steele, K. Johnson, S. C. Riser, and D. Swift (2018), Assessing Phytoplankton Activities in the Seasonal Ice Zone of the Greenland Sea Over an Annual Cycle, Journal of Geophysical Research: Oceans, 123(11), 8004-8025, doi: https://doi.org/10.1029/2018JC014271.

Mazloff, M. R., B. D. Cornuelle, S. T. Gille, and A. Verdy (2018), Correlation Lengths for Estimating the Large‐Scale Carbon and Heat Content of the Southern Ocean, Journal of Geophysical Research: Oceans, 123(2), 883-901, doi: https://doi.org/10.1002/2017JC013408.

Mignot, A., R. Ferrari, and H. Claustre (2018), Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom, Nature Communications, 9(1), 190, doi: https://doi.org/10.1038/s41467-017-02143-6.

Nencioli, F., G. Dall’Olmo, and G. D. Quartly (2018), Agulhas Ring Transport Efficiency From Combined Satellite Altimetry and Argo Profiles, Journal of Geophysical Research: Oceans, 123(8), 5874-5888, doi: https://doi.org/10.1029/2018JC013909.

Petihakis, G., et al. (2018), An integrated open-coastal biogeochemistry, ecosystem and biodiversity observatory of the eastern Mediterranean – the Cretan Sea component of the POSEIDON system, Ocean Sci., 14(5), 1223-1245, doi: https://doi.org/10.5194/os-14-1223-2018.

Riser, S. C., D. Swift, and R. Drucker (2018), Profiling Floats in SOCCOM: Technical Capabilities for Studying the Southern Ocean, Journal of Geophysical Research: Oceans, 123(6), 4055-4073, doi: https://doi.org/10.1002/2017JC013419.

Russell, J. L., et al. (2018), Metrics for the Evaluation of the Southern Ocean in Coupled Climate Models and Earth System Models, Journal of Geophysical Research: Oceans, 123(5), 3120-3143, doi: https://doi.org/10.1002/2017JC013461.

Sammartino, M., S. Marullo, R. Santoleri, and M. Scardi (2018), Modelling the Vertical Distribution of Phytoplankton Biomass in the Mediterranean Sea from Satellite Data: A Neural Network Approach, Remote Sensing, 10(10), 1666, doi: https://doi.org/10.3390/rs10101666.

Sarma, V. V. S. S., and T. V. S. Udaya Bhaskar (2018), Ventilation of Oxygen to Oxygen Minimum Zone Due to Anticyclonic Eddies in the Bay of Bengal, Journal of Geophysical Research: Biogeosciences, 123(7), 2145-2153, doi: https://doi.org/10.1029/2018JG004447.

Stanev, E. V., P. M. Poulain, S. Grayek, K. S. Johnson, H. Claustre, and J. W. Murray (2018), Understanding the Dynamics of the Oxic‐Anoxic Interface in the Black Sea, Geophys. Res. Lett., 45(2), 864-871, doi: https://doi.org/10.1002/2017GL076206.

Swart, S., K. Johnson, M. R. Mazloff, A. Meijers, M. P. Meredith, L. Newman, and J. B. Sallee (2018), Antarctica: Southern Ocean in State of the Climate in 2017, Bull. Am. Meteorol. Soc., 99(8), S185 – S188, doi: https://doi.org/10.1175/2018BAMSStateoftheClimate.1.

Taillandier, V., et al. (2018), Hydrography and biogeochemistry dedicated to the Mediterranean BGC-Argo network during a cruise with RV Tethys 2 in May 2015, Earth Syst. Sci. Data, 10(1), 627-641, doi: https://doi.org/10.5194/essd-10-627-2018.

Takeshita, Y., K. S. Johnson, T. R. Martz, J. N. Plant, and J. L. Sarmiento (2018), Assessment of Autonomous pH Measurements for Determining Surface Seawater Partial Pressure of CO2, Journal of Geophysical Research: Oceans, 123(6), 4003-4013, doi: https://doi.org/10.1029/2017JC013387.

Vidya, P. J., and S. Kurian (2018), Impact of 2015–2016 ENSO on the winter bloom and associated phytoplankton community shift in the northeastern Arabian Sea, J. Mar. Syst., 186, 96-104, doi: https://doi.org/10.1016/j.jmarsys.2018.06.005.

Williams, N. L., L. W. Juranek, R. A. Feely, J. L. Russell, K. S. Johnson, and B. Hales (2018), Assessment of the Carbonate Chemistry Seasonal Cycles in the Southern Ocean From Persistent Observational Platforms, Journal of Geophysical Research: Oceans, 123(7), 4833-4852, doi: https://doi.org/10.1029/2017JC012917.

Wojtasiewicz, B., N. J. Hardman-Mountford, D. Antoine, F. Dufois, D. Slawinski, and T. W. Trull (2018), Use of bio-optical profiling float data in validation of ocean colour satellite products in a remote ocean region, Remote Sens. Environ., 209, 275-290, doi: https://doi.org/10.1016/j.rse.2018.02.057.

Wojtasiewicz, B., I. D. Walsh, D. Antoine, D. Slawinski, and N. J. Hardman-Mountford (2018), Inferring and Removing a Spurious Response in the Optical Backscattering Signal from an Autonomous Profiling Float, J. Atmos. Ocean. Technol., 35(11), 2137-2146, doi: https://doi.org/10.1175/JTECH-D-18-0027.1.

Wolf, M. K., R. C. Hamme, D. Gilbert, I. Yashayaev, and V. Thierry (2018), Oxygen Saturation Surrounding Deep Water Formation Events in the Labrador Sea From Argo-O2 Data, Glob. Biogeochem. Cycle, 32(4), 635-653, doi: https://doi.org/10.1002/2017GB005829.

Xing, X., N. Briggs, E. Boss, and H. Claustre (2018), Improved correction for non-photochemical quenching of in situ chlorophyll fluorescence based on a synchronous irradiance profile, Opt. Express, 26(19), 24734-24751, doi: https://doi.org/10.1364/OE.26.024734.

Xing, X.-G., H. Claustre, E. Boss, and F. Chai (2018), Toward deeper development of Biogeochemical-Argo floats, Atmospheric and Oceanic Science Letters, 11(3), 287-290, doi: https://doi.org/10.1080/16742834.2018.1457932.

2017 (35)

Arrigo, K. R., G. L. van Dijken, R. M. Castelao, H. Luo, Å. K. Rennermalm, M. Tedesco, T. L. Mote, H. Oliver, and P. L. Yager (2017), Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters, Geophys. Res. Lett., 44(12), 6278-6285, doi: http://dx.doi.org/10.1002/2017GL073583.

Bushinsky, S. M., A. R. Gray, K. S. Johnson, and J. L. Sarmiento (2017), Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes, Journal of Geophysical Research: Oceans, 122(11), 8661-8682, doi: http://dx.doi.org/10.1002/2017JC012923.

Chacko, N. (2017), Chlorophyll bloom in response to tropical cyclone Hudhud in the Bay of Bengal: Bio-Argo subsurface observations, Deep Sea Research Part I: Oceanographic Research Papers, 124, 66-72, doi: http://dx.doi.org/10.1016/j.dsr.2017.04.010.

Chakraborty, K., N. Kumar, and G. V. M. Gupta (2017), Getting the right wind-forcing for an ecosystem model: A case study from the eastern Arabian Sea, J. Oper. Oceanogr., 10(2), 176-190, doi: http://dx.doi.org/10.1080/1755876X.2017.1354686.

Coppola, L., L. Prieur, I. Taupier-Letage, C. Estournel, P. Testor, D. Lefevre, S. Belamari, S. LeReste, and V. Taillandier (2017), Observation of oxygen ventilation into deep waters through targeted deployment of multiple Argo-O2 floats in the north-western Mediterranean Sea in 2013, Journal of Geophysical Research: Oceans, 122(8), 6325-6341, doi: http://dx.doi.org/10.1002/2016JC012594.

Dufois, F., N. J. Hardman-Mountford, M. Fernandes, B. Wojtasiewicz, D. Shenoy, D. Slawinski, M. Gauns, J. Greenwood, and R. Toresen (2017), Observational insights into chlorophyll distributions of subtropical South Indian Ocean eddies, Geophys. Res. Lett., 44(7), 3255-3264, doi: http://dx.doi.org/10.1002/2016GL072371.

Haëntjens, N., E. Boss, and L. D. Talley (2017), Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats, Journal of Geophysical Research: Oceans, 122(8), 6583-6593, doi: http://dx.doi.org/10.1002/2017JC012844.

Johnson, K. S. (2017), Developing chemical sensors to observe the health of the global ocean, paper presented at 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 18-22 June 2017.

Johnson, K. S., et al. (2017), Biogeochemical sensor performance in the SOCCOM profiling float array, Journal of Geophysical Research: Oceans, 122(8), 6416-6436, doi: http://dx.doi.org/10.1002/2017JC012838.

Johnson, K. S., J. N. Plant, J. P. Dunne, L. D. Talley, and J. L. Sarmiento (2017), Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production, Journal of Geophysical Research: Oceans, 122(8), 6668-6683, doi: http://dx.doi.org/10.1002/2017JC012839.

Kamenkovich, I., A. Haza, A. R. Gray, C. O. Dufour, and Z. Garraffo (2017), Observing System Simulation Experiments for an array of autonomous biogeochemical profiling floats in the Southern Ocean, Journal of Geophysical Research: Oceans, 122(9), 7595-7611, doi: http://dx.doi.org/10.1002/2017JC012819.

Karstensen, J., et al. (2017), Upwelling and isolation in oxygen-depleted anticyclonic modewater eddies and implications for nitrate cycling, Biogeosciences, 14(8), 2167-2181, doi: https://doi.org/10.5194/bg-14-2167-2017.

Keerthi, M. G., et al. (2017), Physical control of interannual variations of the winter chlorophyll bloom in the northern Arabian Sea, Biogeosciences, 14(15), 3615-3632, doi: https://doi.org/10.5194/bg-14-3615-2017.

Kessouri, F., et al. (2017), Nitrogen and Phosphorus Budgets in the Northwestern Mediterranean Deep Convection Region, Journal of Geophysical Research: Oceans, 122(12), 9429-9454, doi: http://dx.doi.org/10.1002/2016JC012665.

Koelling, J., D. W. R. Wallace, U. Send, and J. Karstensen (2017), Intense oceanic uptake of oxygen during 2014–2015 winter convection in the Labrador Sea, Geophys. Res. Lett., 44(15), 7855-7864, doi: http://dx.doi.org/10.1002/2017GL073933.

Lacour, L., M. Ardyna, K. F. Stec, H. Claustre, L. Prieur, A. Poteau, M. R. D’Alcala, and D. Iudicone (2017), Unexpected winter phytoplankton blooms in the North Atlantic subpolar gyre, Nat. Geosci., 10, 836, doi: http://dx.doi.org/10.1038/ngeo3035.

Lu, W. (2017), Physical Modulation to the Biological Production in the South China Sea: A Physical-Biological Coupled Model Approach, University of Delaware https://search.proquest.com/docview/2024166828?accountid=14524.

Mayot, N., F. D’Ortenzio, V. Taillandier, L. Prieur, O. P. de Fommervault, H. Claustre, A. Bosse, P. Testor, and P. Conan (2017), Physical and Biogeochemical Controls of the Phytoplankton Blooms in North Western Mediterranean Sea: A Multiplatform Approach Over a Complete Annual Cycle (2012–2013 DEWEX Experiment), Journal of Geophysical Research: Oceans, 122(12), 9999-10019, doi: http://dx.doi.org/10.1002/2016JC012052.

Mayot, N., F. D’Ortenzio, J. Uitz, B. Gentili, J. Ras, V. Vellucci, M. Golbol, D. Antoine, and H. Claustre (2017), Influence of the Phytoplankton Community Structure on the Spring and Annual Primary Production in the Northwestern Mediterranean Sea, Journal of Geophysical Research: Oceans, 122(12), 9918-9936, doi: http://dx.doi.org/10.1002/2016JC012668.

Olita, A., A. Capet, M. Claret, A. Mahadevan, P. M. Poulain, A. Ribotti, S. Ruiz, J. Tintoré, A. Tovar-Sánchez, and A. Pascual (2017), Frontal dynamics boost primary production in the summer stratified Mediterranean sea, Ocean Dyn., 67(6), 767-782, doi: https://doi.org/10.1007/s10236-017-1058-z.

Olsen, A. (2017), Autonomous observing platform CO2 data shed new light on the Southern Ocean carbon cycle, Glob. Biogeochem. Cycle, 31(6), 1032-1035, doi: http://dx.doi.org/10.1002/2017GB005676.

Organelli, E., et al. (2017), Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications, Earth Syst. Sci. Data, 9(2), 861-880, doi: https://doi.org/10.5194/essd-9-861-2017.

Organelli, E., H. Claustre, A. Bricaud, M. Barbieux, J. Uitz, F. D’Ortenzio, and G. Dall’Olmo (2017), Bio-optical anomalies in the world’s oceans: An investigation on the diffuse attenuation coefficients for downward irradiance derived from Biogeochemical Argo float measurements, Journal of Geophysical Research: Oceans, 122(5), 3543-3564, doi: http://dx.doi.org/10.1002/2016JC012629.

Poteau, A., E. Boss, and H. Claustre (2017), Particulate concentration and seasonal dynamics in the mesopelagic ocean based on the backscattering coefficient measured with Biogeochemical-Argo floats, Geophys. Res. Lett., 44(13), 6933-6939, doi: http://dx.doi.org/10.1002/2017GL073949.

Rembauville, M., N. Briggs, M. Ardyna, J. Uitz, P. Catala, C. Penkerc’h, A. Poteau, H. Claustre, and S. Blain (2017), Plankton Assemblage Estimated with BGC-Argo Floats in the Southern Ocean: Implications for Seasonal Successions and Particle Export, Journal of Geophysical Research: Oceans, 122(10), 8278-8292, doi: http://dx.doi.org/10.1002/2017JC013067.

Roesler, C., et al. (2017), Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors, Limnology and Oceanography: Methods, 15(6), 572-585, doi: https://doi.org/10.1002/lom3.10185.

Rosso, I., M. R. Mazloff, A. Verdy, and L. D. Talley (2017), Space and time variability of the Southern Ocean carbon budget, Journal of Geophysical Research: Oceans, 122(9), 7407-7432, doi: http://dx.doi.org/10.1002/2016JC012646.

Sauzède, R., H. C. Bittig, H. Claustre, O. Pasqueron de Fommervault, J.-P. Gattuso, L. Legendre, and K. S. Johnson (2017), Estimates of Water-Column Nutrient Concentrations and Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural Networks, Frontiers in Marine Science, 4(128), doi: https://doi.org/10.3389/fmars.2017.00128.

Stanev, E. V., S. Grayek, H. Claustre, C. Schmechtig, and A. Poteau (2017), Water intrusions and particle signatures in the Black Sea: a Biogeochemical-Argo float investigation, Ocean Dyn., 67(9), 119-1136, doi: https://doi.org/10.1007/s10236-017-1077-9.

Stukel, M. R., and H. W. Ducklow (2017), Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean, Glob. Biogeochem. Cycle, 31(9), 1420-1434, doi: https://doi.org/10.1002/2017GB005652.

Sun, D., T. Ito, and A. Bracco (2017), Oceanic Uptake of Oxygen During Deep Convection Events Through Diffusive and Bubble-Mediated Gas Exchange, Glob. Biogeochem. Cycle, 31(10), 1579-1591, doi: http://dx.doi.org/10.1002/2017GB005716.

Verdy, A., and M. R. Mazloff (2017), A data assimilating model for estimating Southern Ocean biogeochemistry, Journal of Geophysical Research: Oceans, 122(9), 6968-6988, doi: http://dx.doi.org/10.1002/2016JC012650.

Williams, N. L., et al. (2017), Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: An uncertainty analysis, Glob. Biogeochem. Cycle, 31(3), 591-604, doi: http://dx.doi.org/10.1002/2016GB005541.

Xing, X., H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. D’Ortenzio (2017), Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter, Limnology and Oceanography: Methods, 15(1), 80-93, doi: http://dx.doi.org/10.1002/lom3.10144.

Yang, B., S. R. Emerson, and S. M. Bushinsky (2017), Annual net community production in the subtropical Pacific Ocean from in situ oxygen measurements on profiling floats, Glob. Biogeochem. Cycle, 31(4), 728-744, doi: http://dx.doi.org/10.1002/2016GB005545.

2016 (33)

Bender, M. L., B. Tilbrook, N. Cassar, B. Jonsson, A. Poisson, and T. W. Trull (2016), Ocean productivity south of Australia during spring and summer, Deep Sea Research Part I: Oceanographic Research Papers, 112, 68-78, doi: http://dx.doi.org/10.1016/j.dsr.2016.02.018.

Bhaskar, T. V. S. U., C. Jayaram, P. R. R. E, and K. H. Rao (2016), Spatio-temporal evolution of chlorophyll-a in the Bay of Bengal: a remote sensing and bio-argo perspective, paper presented at Proc. SPIE 9878, Remote Sensing of the Oceans and Inland Waters: Techniques, Applications, and Challenges.

Bishop, J. K. B., M. B. Fong, and T. J. Wood (2016), Robotic observations of high wintertime carbon export in California coastal waters, Biogeosciences, 13(10), 3109-3129, doi: http://dx.doi.org/10.5194/bg-13-3109-2016.

Bushinsky, S. M., S. R. Emerson, S. C. Riser, and D. D. Swift (2016), Accurate oxygen measurements on modified Argo floats using in situ air calibrations, Limnology and Oceanography: Methods, 491-505, doi: http://dx.doi.org/10.1002/lom3.10107.

Capet, A., E. V. Stanev, J. M. Beckers, J. W. Murray, and M. Grégoire (2016), Decline of the Black Sea oxygen inventory, Biogeosciences, 13(4), 1287-1297, doi: http://dx.doi.org/10.5194/bg-13-1287-2016.

Cyr, F., H. van Haren, F. Mienis, G. Duineveld, and D. Bourgault (2016), On the influence of cold-water coral mound size on flow hydrodynamics, and vice versa, Geophys. Res. Lett., 43(2), 775-783, doi: http://dx.doi.org/10.1002/2015GL067038.

Dall’Olmo, G., J. Dingle, L. Polimene, R. J. W. Brewin, and H. Claustre (2016), Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump, Nat. Geosci., 9, 820-823, doi: http://dx.doi.org/10.1038/ngeo2818.

Drucker, R., and S. C. Riser (2016), In situ phase-domain calibration of oxygen Optodes on profiling floats, Methods in Oceanography, 17, 296-318, doi: https://doi.org/10.1016/j.mio.2016.09.007.

Fiedler, B., et al. (2016), Oxygen utilization and downward carbon flux in an oxygen-depleted eddy in the eastern tropical North Atlantic, Biogeosciences, 13(19), 5633-5647, doi: http://dx.doi.org/10.5194/bg-13-5633-2016.

Gao, W., P. Li, S.-P. Xie, L. Xu, and C. Liu (2016), Multicore structure of the North Pacific subtropical mode water from enhanced Argo observations, Geophys. Res. Lett., 43(3), 1249-1255, doi: http://dx.doi.org/10.1002/2015GL067495.

Hennon, T. D. (2016), Global Observations of Physical and Biogeochemical Processes in the Ocean, University of Washington http://search.proquest.com/docview/1832941828?accountid=14524.

Hennon, T. D., S. C. Riser, and S. Mecking (2016), Profiling float-based observations of net respiration beneath the mixed layer, Glob. Biogeochem. Cycle, 30(6), 920-932, doi: http://dx.doi.org/10.1002/2016GB005380.

Inoue, R., V. Faure, and S. Kouketsu (2016), Float observations of an anticyclonic eddy off Hokkaido, Journal of Geophysical Research: Oceans, 121(8), 6103-6120, doi: http://dx.doi.org/10.1002/2016JC011698.

Inoue, R., M. Kitamura, and T. Fujiki (2016), Diel vertical migration of zooplankton at the S1 biogeochemical mooring revealed from acoustic backscattering strength, Journal of Geophysical Research: Oceans, 121(2), 1031-1050, doi: http://dx.doi.org/10.1002/2015JC011352.

Inoue, R., and S. Kouketsu (2016), Physical oceanographic conditions around the S1 mooring site, J. Oceanogr., 72(3), 453-464, doi: http://dx.doi.org/10.1007/s10872-015-0342-0.

Inoue, R., T. Suga, S. Kouketsu, T. Kita, S. Hosoda, Y. Kobayashi, K. Sato, H. Nakajima, and T. Kawano (2016), Western North Pacific Integrated Physical-Biogeochemical Ocean Observation Experiment (INBOX): Part 1. Specifications and chronology of the S1-INBOX floats, J. Mar. Res., 74(2), 43-69, doi: http://dx.doi.org/10.1357/002224016819257344.

Johnson, K. S., and H. Claustre (2016), Bringing Biogeochemistry into the Argo Age, Eos, 97, doi: https://doi.org/10.1029/2016EO062427.

Johnson, K. S., H. W. Jannasch, L. J. Coletti, V. A. Elrod, T. R. Martz, Y. Takeshita, R. J. Carlson, and J. G. Connery (2016), Deep-Sea DuraFET: A Pressure Tolerant pH Sensor Designed for Global Sensor Networks, Analytical Chemistry, 88(6), 3249-3256, doi: http://dx.doi.org/10.1021/acs.analchem.5b04653.

Kassis, D., E. Krasakopoulou, G. Korres, G. Petihakis, and G. S. Triantafyllou (2016), Hydrodynamic features of the South Aegean Sea as derived from Argo T/S and dissolved oxygen profiles in the area, Ocean Dyn., 66(11), 1449-1466, doi: http://dx.doi.org/10.1007/s10236-016-0987-2.

Kouketsu, S., R. Inoue, and T. Suga (2016), Western North Pacific Integrated Physical-Biogeochemical Ocean Observation Experiment (INBOX): Part 3. Mesoscale variability of dissolved oxygen concentrations observed by multiple floats during S1-INBOX, J. Mar. Res., 74(2), 101-131, doi: http://dx.doi.org/10.1357/002224016819257326.

Lacour, L. o. (2016), Dynamique des blooms phytoplanctoniques dans le gyre subpolaire de l’Atlantique Nord, Université Pierre et Marie Curie – Paris VI https://tel.archives-ouvertes.fr/tel-01595954.

Li, B., Y. W. Watanabe, and A. Yamaguchi (2016), Spatiotemporal distribution of seawater pH in the North Pacific subpolar region by using the parameterization technique, Journal of Geophysical Research: Oceans, 121(5), 3435-3449, doi: http://dx.doi.org/10.1002/2015JC011615.

Li, Z., and N. Cassar (2016), Satellite estimates of net community production based on O2/Ar observations and comparison to other estimates, Glob. Biogeochem. Cycle, 30(5), 735-752, doi: http://dx.doi.org/10.1002/2015GB005314.

Organelli, E., H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci (2016), A Novel Near-Real-Time Quality-Control Procedure for Radiometric Profiles Measured by Bio-Argo Floats: Protocols and Performances, J. Atmos. Ocean. Technol., 33(5), 937-951, doi: http://dx.doi.org/10.1175/JTECH-D-15-0193.1.

Plant, J. N., K. S. Johnson, C. M. Sakamoto, H. W. Jannasch, L. J. Coletti, S. C. Riser, and D. D. Swift (2016), Net community production at Ocean Station Papa observed with nitrate and oxygen sensors on profiling floats, Glob. Biogeochem. Cycle, 30(6), 859-879, doi: http://dx.doi.org/10.1002/2015GB005349.

Raes, E. J., L. Bodrossy, J. Van de Kamp, B. Holmes, N. J. Hardman-Mountford, P. A. Thompson, A. S. McInnes, and A. M. Waite (2016), Reduction of the Powerful Greenhouse Gas N2O in the South-Eastern Indian Ocean, PLoS ONE, 11(1), doi: http://dx.doi.org/10.1371/journal.pone.0145996.

Rousselet, L., A. M. Doglioli, C. Maes, B. Blanke, and A. A. Petrenko (2016), Impacts of mesoscale activity on the water masses and circulation in the Coral Sea, Journal of Geophysical Research: Oceans, 121(10), 7277-7289, doi: http://dx.doi.org/10.1002/2016JC011861.

Sauzède, R., H. Claustre, J. Uitz, C. Jamet, G. Dall’Olmo, F. D’Ortenzio, B. Gentili, A. Poteau, and C. Schmechtig (2016), A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the particulate backscattering coefficient, Journal of Geophysical Research: Oceans, 121(4), 2552-2571, doi: http://dx.doi.org/10.1002/2015JC011408.

Schütte, F., J. Karstensen, G. Krahmann, H. Hauss, B. Fiedler, P. Brandt, M. Visbeck, and A. Körtzinger (2016), Characterization of “dead-zone” eddies in the eastern tropical North Atlantic, Biogeosciences, 13(20), 5865-5881, doi: http://dx.doi.org/10.5194/bg-13-5865-2016.

Stramma, L., R. Czeschel, T. Tanhua, P. Brandt, M. Visbeck, and B. S. Giese (2016), The flow field of the upper hypoxic eastern tropical North Atlantic oxygen minimum zone, Ocean Sci., 12(1), 153-167, doi: http://dx.doi.org/10.5194/os-12-153-2016.

Visinelli, L., S. Masina, M. Vichi, A. Storto, and T. Lovato (2016), Impacts of data assimilation on the global ocean carbonate system, J. Mar. Syst., 158, 106-119, doi: http://dx.doi.org/10.1016/j.jmarsys.2016.02.011.

Westberry, T. K., P. Schultz, M. J. Behrenfeld, J. P. Dunne, M. R. Hiscock, S. Maritorena, J. L. Sarmiento, and D. A. Siegel (2016), Annual cycles of phytoplankton biomass in the subarctic Atlantic and Pacific Ocean, Glob. Biogeochem. Cycle, 30(2), 175-190, doi: http://dx.doi.org/10.1002/2015GB005276.

Williams, N. L., L. W. Juranek, K. S. Johnson, R. A. Feely, S. C. Riser, L. D. Talley, J. L. Russell, J. L. Sarmiento, and R. Wanninkhof (2016), Empirical algorithms to estimate water column pH in the Southern Ocean, Geophys. Res. Lett., 43(7), 3415-3422, doi: http://dx.doi.org/10.1002/2016GL068539.

2015 (13)

Bhaskar, T. V. S., N. S. Kumar, M. Ravichandran, and K. D. A. Kumar (2015), On the Possible Use of Satellite Fixed Positions for Argo Float Profiles in Case of Wrong Fixes by GPS, International Journal of Earth Science and Engineering, 8(2), 710-715, doi.

Bittig, H. C., and A. Körtzinger (2015), Tackling Oxygen Optode Drift: Near-Surface and In-Air Oxygen Optode Measurements on a Float Provide an Accurate in Situ Reference, J. Atmos. Ocean. Technol., 32(8), 1536-1543, doi: http://dx.doi.org/10.1175/JTECH-D-14-00162.1.

Bushinsky, S. M., and S. Emerson (2015), Marine biological production from in situ oxygen measurements on a profiling float in the subarctic Pacific Ocean, Glob. Biogeochem. Cycle, 29(12), 2050-2060, doi: http://dx.doi.org/10.1002/2015GB005251.

Clarke, J. (2015), Characterisation of pH and pCO2 optodes towards high resolution in situ ocean deployment, University of Southampton http://oatd.org/oatd/record?record=oai\:ethos.bl.uk\:675195&q=%28argo%29%20AND%20pub_dt%3A%5B2005-01-01T00%3A00%3A00Z%20TO%202016-01-01T00%3A00%3A00Z%5D.

Fripiat, F., et al. (2015), Significant mixed layer nitrification in a natural iron-fertilized bloom of the Southern Ocean, Glob. Biogeochem. Cycle, 29(11), 1929-1943, doi: http://dx.doi.org/10.1002/2014GB005051.

Grenier, M., A. Della Penna, and T. W. Trull (2015), Autonomous profiling float observations of the high-biomass plume downstream of the Kerguelen Plateau in the Southern Ocean, Biogeosciences, 12(9), 2707-2735, doi: http://dx.doi.org/10.5194/bg-12-2707-2015.

Itoh, S., I. Yasuda, H. Saito, A. Tsuda, and K. Komatsu (2015), Mixed layer depth and chlorophyll a: Profiling float observations in the Kuroshio-Oyashio Extension region, J. Mar. Syst., 151, 1-14, doi: http://dx.doi.org/10.1016/j.jmarsys.2015.06.004.

Johnson, K. S., J. N. Plant, S. C. Riser, and D. Gilbert (2015), Air Oxygen Calibration of Oxygen Optodes on a Profiling Float Array, J. Atmos. Ocean. Technol., 32(11), 2160-2172, doi: http://dx.doi.org/10.1175/JTECH-D-15-0101.1.

Karstensen, J., B. Fiedler, F. Schütte, P. Brandt, A. Körtzinger, G. Fischer, R. Zantopp, J. Hahn, M. Visbeck, and D. Wallace (2015), Open ocean dead zones in the tropical North Atlantic Ocean, Biogeosciences, 12(8), 2597-2605, doi: http://dx.doi.org/10.5194/bg-12-2597-2015.

Lavigne, H., F. D’Ortenzio, M. Ribera D’Alcalà, H. Claustre, R. Sauzède, and M. Gacic (2015), On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin-scale and seasonal approach, Biogeosciences, 12(16), 5021-5039, doi: http://dx.doi.org/10.5194/bg-12-5021-2015.

Ohde, T., B. Fiedler, and A. Körtzinger (2015), Spatio-temporal distribution and transport of particulate matter in the eastern tropical North Atlantic observed by Argo floats, Deep Sea Research Part I: Oceanographic Research Papers, 102, 26-42, doi: http://dx.doi.org/10.1016/j.dsr.2015.04.007.

Pasqueron de Fommervault, O., et al. (2015), Seasonal variability of nutrient concentrations in the Mediterranean Sea: Contribution of Bio-Argo floats, Journal of Geophysical Research: Oceans, 120(12), 8528-8550, doi: http://dx.doi.org/10.1002/2015JC011103.

Sauzède, R., H. Lavigne, H. Claustre, J. Uitz, C. Schmechtig, F. D’Ortenzio, C. Guinet, and S. Pesant (2015), Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean, Earth System Science Data, 7(2), 261-273, doi: http://dx.doi.org/10.5194/essd-7-261-2015.

2014 (9)

Bittig, H. C., B. Fiedler, R. Scholz, G. Krahmann, and A. Körtzinger (2014), Time response of oxygen optodes on profiling platforms and its dependence on flow speed and temperature, Limnology and Oceanography: Methods, 12(8), 617-636, doi: http://dx.doi.org/10.4319/lom.2014.12.617.

Dall’Olmo, G., and K. A. Mork (2014), Carbon export by small particles in the Norwegian Sea, Geophys. Res. Lett., 41(8), 2921-2927, doi: http://dx.doi.org/10.1002/2014GL059244.

D’Ortenzio, F., et al. (2014), Observing mixed layer depth, nitrate and chlorophyll concentrations in the northwestern Mediterranean: A combined satellite and NO3 profiling floats experiment, Geophys. Res. Lett., 41(18), 2014GL061020, doi: http://dx.doi.org/10.1002/2014GL061020.

Emerson, S. R., and S. Bushinsky (2014), Oxygen Concentrations and Biological Fluxes in the Open Ocean, Oceanography, 27(1), 168-171, doi: http://dx.doi.org/10.5670/oceanog.2014.20.

Green, R. E., A. S. Bower, and A. Lugo-Fernandez (2014), First Autonomous Bio-Optical Profiling Float in the Gulf of Mexico Reveals Dynamic Biogeochemistry in Deep Waters, Plos One, 9(7), 9, doi: http://dx.doi.org/10.1371/journal.pone.0101658.

Mignot, A., H. Claustre, J. Uitz, A. Poteau, F. D’Ortenzio, and X. Xing (2014), Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float investigation, Glob. Biogeochem. Cycle, 28(8), 856-876, doi: http://dx.doi.org/10.1002/2013GB004781.

Takano, Y., T. Ito, C. Deutsch, and K. S. Johnson (2014), Interpreting intraseasonal variability of subsurface tracers observed by a profiling float, J. Geophys. Res.-Oceans, 119(1), 288-296, doi: http://dx.doi.org/10.1002/2013JC009290.

Xing, X., H. Claustre, J. Uitz, A. Mignot, A. Poteau, and H. Wang (2014), Seasonal variations of bio-optical properties and their interrelationships observed by Bio-Argo floats in the subpolar North Atlantic, Journal of Geophysical Research: Oceans, 119(10), 7372-7388, doi: http://dx.doi.org/10.1002/2014JC010189.

Xing, X., H. Claustre, H. Wang, A. Poteau, and F. D‘Ortenzio (2014), Seasonal dynamics in colored dissolved organic matter in the Mediterranean Sea: Patterns and drivers, Deep Sea Research Part I: Oceanographic Research Papers, 83(0), 93-101, doi: http://dx.doi.org/10.1016/j.dsr.2013.09.008.

2013 (8)

Estapa, M. L., K. Buesseler, E. Boss, and G. Gerbi (2013), Autonomous, high-resolution observations of particle flux in the oligotrophic ocean, Biogeosciences, 10(8), 5517-5531, doi: http://dx.doi10.5194/bg-10-5517-2013.

Fiedler, B., P. Fietzek, N. Vieira, P. Silva, H. C. Bittig, and A. Körtzinger (2013), In Situ CO2 and O2 Measurements on a Profiling Float, J. Atmos. Ocean. Technol., 30(1), 112-126, doi: http://dx.doi.org/10.1175/JTECH-D-12-00043.1.

Johnson, K. S., L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, D. D. Swift, and S. C. Riser (2013), Long-Term Nitrate Measurements in the Ocean Using the in situ Ultraviolet Spectrophotometer: Sensor Integration into the APEX Profiling Float, J. Atmos. Ocean. Technol., 30(8), 1854-1866, doi: http://dx.doi.org/10.1175/jtech-d-12-00221.1.

Lavigne, H., F. D’Ortenzio, C. Migon, H. Claustre, P. Testor, M. R. d’Alcalà, R. Lavezza, L. Houpert, and L. Prieur (2013), Enhancing the comprehension of mixed layer depth control on the Mediterranean phytoplankton phenology, Journal of Geophysical Research: Oceans, 118(7), 3416-3430, doi: http://dx.doi.org/10.1002/jgrc.20251.

Omand, M. M., and A. Mahadevan (2013), Large-scale alignment of oceanic nitrate and density, J. Geophys. Res.-Oceans, 118(10), 5322-5332, doi: http://dx.doi.org/10.1002/jgrc.20379.

Rehm, E., and C. D. Mobley (2013), Estimation of hyperspectral inherent optical properties from in-water radiometry: error analysis and application to in situ data, Applied Optics, 52(4), 795-817, doi: https://doi.org/10.1364/AO.52.000795.

Stanev, E. V., Y. He, S. Grayek, and A. Boetius (2013), Oxygen dynamics in the Black Sea as seen by Argo profiling floats, Geophys. Res. Lett., 40(12), 3085-3090, doi: http://dx.doi.org/10.1002/grl.50606.

Takeshita, Y., T. R. Martz, K. S. Johnson, J. N. Plant, D. Gilbert, S. C. Riser, C. Neill, and B. Tilbrook (2013), A climatology-based quality control procedure for profiling float oxygen data, Journal of Geophysical Research: Oceans, 118(10), 5640-5650, doi: http://dx.doi.org/10.1002/jgrc.20399.

2012 (8)

Alkire, M. B., et al. (2012), Estimates of net community production and export using high-resolution, Lagrangian measurements of O-2, NO3-, and POC through the evolution of a spring diatom bloom in the North Atlantic, Deep-Sea Res. Part I-Oceanogr. Res. Pap., 64, 157-174, doi: http://dx.doi.org/10.1016/j.dsr.2012.01.012.

Czeschel, R., L. Stramma, and G. C. Johnson (2012), Oxygen decreases and variability in the eastern equatorial Pacific, Journal of Geophysical Research: Oceans, 117(C11), C11019, doi: http://dx.doi.org/10.1029/2012JC008043.

Lavigne, H., F. D’Ortenzio, H. Claustre, and A. Poteau (2012), Towards a merged satellite and in situ fluorescence ocean chlorophyll product, Biogeosciences, 9(6), 2111-2125, doi: http://dx.doi.org/10.5194/bg-9-2111-2012.

Mahadevan, A., E. D’Asaro, C. Lee, and M. J. Perry (2012), Eddy-Driven Stratification Initiates North Atlantic Spring Phytoplankton Blooms, Science, 337(6090), 54-58, doi: http://dx.doi.org/10.1126/science.1218740.

Prakash, S., T. M. B. Nair, T. V. S. U. Bhaskar, P. Prakash, and D. Gilbert (2012), Oxycline variability in the central Arabian Sea: An Argo-oxygen study, Journal of Sea Research, 71, 1-8, doi: http://dx.doi.org/10.1016/j.seares.2012.03.003.

Ravichandran, M., M. S. Girishkumar, and S. Riser (2012), Observed variability of chlorophyll-a using Argo profiling floats in the southeastern Arabian Sea, Deep Sea Research Part I: Oceanographic Research Papers, 65, 15-25, doi: http://dx.doi.org/10.1016/j.dsr.2012.03.003.

Ulloa, O., D. E. Canfield, E. F. DeLong, R. M. Letelier, and F. J. Stewart (2012), Microbial oceanography of anoxic oxygen minimum zones, Proc. Natl. Acad. Sci. U. S. A., 109(40), 15996-16003, doi: http://dx.doi.org/10.1073/pnas.1205009109.

Xing, X., A. Morel, H. Claustre, F. D’Ortenzio, and A. Poteau (2012), Combined processing and mutual interpretation of radiometry and fluorometry from autonomous profiling Bio-Argo floats: 2. Colored dissolved organic matter absorption retrieval, Journal of Geophysical Research: Oceans, 117(C4), C04022, doi: http://dx.doi.org/10.1029/2011JC007632.

2011 (4)

Bagniewski, W., K. Fennel, M. J. Perry, and E. A. D’Asaro (2011), Optimizing models of the North Atlantic spring bloom using physical, chemical and bio-optical observations from a Lagrangian float, Biogeosciences, 8(5), 1291-1307, doi: http://dx.doi.org/10.5194/bg-8-1291-2011.

Juranek, L. W., R. A. Feely, D. Gilbert, H. Freeland, and L. A. Miller (2011), Real-time estimation of pH and aragonite saturation state from Argo profiling floats: Prospects for an autonomous carbon observing strategy, Geophys. Res. Lett., 38(17), L17603, doi: http://dx.doi.org/10.1029/2011GL048580.

Sukigara, C., T. Suga, T. Saino, K. Toyama, D. Yanagimoto, K. Hanawa, and N. Shikama (2011), Biogeochemical evidence of large diapycnal diffusivity associated with the subtropical mode water of the North Pacific, J. Oceanogr., 67(1), 77-85, doi: http://dx.doi.org/10.1007/s10872-011-0008-5.

Xing, X., A. Morel, H. Claustre, D. Antoine, F. D’Ortenzio, A. Poteau, A. Mignot, Z. Lee, S. Shang, and C. Hu (2011), Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio Argo floats: Chlorophyll a retrieval, J. Geophys. Res, 116, C06020, doi: http://dx.doi.org/10.1029/2010JC006899.

2010 (9)

Boss, E., and M. Behrenfeld (2010), In situ evaluation of the initiation of the North Atlantic phytoplankton bloom, Geophys. Res. Lett., 37(18), L18603, doi: http://dx.doi.org/10.1029/2010GL044174.

Claustre, H., et al. (2010), Bio-Optical Profiling Floats as New Observational Tools for Biogeochemical and Ecosystem Studies: Potential Synergies with Ocean Color Remote Sensing, paper presented at Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, ESA Publication, Venice, Italy.

Claustre, H., and co-authors (2010), Bio-optical Profiling Floats as New Observational Tools for Biogeochemical and Ecosystem Studies, in Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, edited by J. Hall, D. E. Harrison and D. Stammer, ESA Publication, Venice, Italy, doi: http://dx.doi.org/10.5270/OceanObs09.cwp.17.

Gruber, N., S. Doney, S. R. Emerson, D. Gilbert, T. Kobayashi, A. Kortzinger, G. C. Johnson, K. Johnson, S. Riser, and O. Ulloa (2010), Addition Oxygen to Argo: Developing a Global In Situ Observatory for Ocean Deoxygenation and Biogeochemistry, paper presented at Proceedings of Oceanobs’09: Sustained Ocean Observations and Information for Society, ESA Publication, Venice, Italy.

Gruber, N., A. Körtzinger, A. Borges, H. Claustre, S. C. Doney, R. A. Feely, M. Hood, M. Ishii, A. Kozyr, and P. Monteiro (2010), Towards an integrated observing system for ocean carbon and biogeochemistry at a time of change, paper presented at Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference, Venice, Italy, 21-25 September 2009, ESA Publication WPP-306.

Johnson, K. S., S. C. Riser, and D. M. Karl (2010), Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre, Nature, 465(7301), 1062-1065, doi: http://dx.doi.org/10.1038/nature09170.

Kihm, C., and A. Kortzinger (2010), Air-sea gas transfer velocity for oxygen derived from float data, J. Geophys. Res., 115(C12), C12003, doi: http://dx.doi.org/10.1029/2009JC006077.

Venables, H., and C. M. Moore (2010), Phytoplankton and light limitation in the Southern Ocean: Learning from high-nutrient, high-chlorophyll areas, J. Geophys. Res., 115(C2), C02015, doi: http://dx.doi.org/10.1029/2009JC005361.

Whitmire, A. L., W. S. Pegau, L. Karp-Boss, E. Boss, and T. J. Cowles (2010), Spectral backscattering properties of marine phytoplankton cultures, Opt. Express, 18(14), 15073-15093, doi.

2009 (3)

Bishop, J. K. B. (2009), Autonomous Observations of the Ocean Biological Carbon Pump, Oceanography, 22(2), 182-193, doi: http://dx.doi.org/10.5670/oceanog.2009.48.

Bishop, J. K. B., and T. J. Wood (2009), Year-round observations of carbon biomass and flux variability in the Southern Ocean, Glob. Biogeochem. Cycle, 23, doi: http://dx.doi.org/10.1029/2008GB003206.

Johnson, K. S., W. M. Berelson, E. S. Boss, Z. Chase, H. Claustre, S. R. Emerson, N. Gruber, A. Kortzinger, M. J. Perry, and S. C. Riser (2009), Observing Biogeochemical Cycles at Global Scales with Profiling Floats and Gliders Prospects for a Global Array, Oceanography, 22(3), 216-225, doi: http://dx.doi.org/10.5670/oceanog.2009.81.

2008 (4)

Boss, E., M. J. Perry, D. Swift, P. Brickley, R. Zaneveld, and S. Riser (2008), Three Years of Ocean Data from a Bio-optical Profiling Float, EOS, 88(23), doi: http://dx.doi.org/10.1029/2008EO230001.

Boss, E., D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M. J. Perry, and P. G. Strutton (2008), Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite, Limnol. Oceanogr., 53(5 part 2), 2112-2122, doi: http://dx.doi.org/10.4319/lo.2008.53.5_part_2.2112.

Martz, T. R., K. S. Johnson, and S. C. Riser (2008), Ocean metabolism observed with oxygen sensors on profiling floats in the South Pacific, Limnol. Oceanogr., 53(5), 2094-2111, doi: http://dx.doi.org/10.4319/lo.2008.53.5_part_2.2094.

Riser, S. C., and K. S. Johnson (2008), Net production of oxygen in the subtropical ocean, Nature, 451(7176), 323-325, doi: http://dx.doi.org/10.1038/nature06441.

2006 (1)

Tengberg, A., et al. (2006), Evaluation of a lifetime-based optode to measure oxygen in aquatic systems, Limnology and Oceanography: Methods, 4(2), 7-17, doi: http://dx.doi.org/10.4319/lom.2006.4.7.

2005 (1)

Kortzinger, A., J. Schimanski, and U. Send (2005), High Quality Oxygen Measurements from Profiling Floats: A Promising New Technique, J. Atmos. Ocean. Technol., 22(3), 302-308, doi: http://dx.doi.org/10.1175%2FJTECH1701.1.

2004 (3)

Bishop, J. K. B., T. J. Wood, R. E. Davis, and J. T. Sherman (2004), Robotic observations of enhanced carbon biomass and export at 55 degrees S during SOFeX, Science, 304(5669), 417-420, doi: http://dx.doi.org/10.1126/science.1087717.

Kortzinger, A., J. Schimanski, U. Send, and D. Wallace (2004), The ocean takes a deep breath, Science, 306(5700), 1337-1337, doi: http://dx.doi.org/10.1126/science.1102557.

Lazarevich, P., T. Rossby, and C. McNeil (2004), Oxygen variability in the near-surface waters of the northern North Atlantic: Observations and a model, J. Mar. Res., 62(5), 663-683, doi: http://dx.doi.org/10.1357/0022240042387547.

2002 (1)

Bishop, J. K. B., R. E. Davis, and J. T. Sherman (2002), Robotic Observations of Dust Storm Enhancement of Carbon Biomass in the North Pacific, Science, 298(5594), 817-821, doi: http://dx.doi.org/10.1126/science.1074961.