
Argo Steering Team Meeting (AST-18)
13-17 March, 2017

CSIRO

Status of the Argo CONFIG parameters

and discussion of the path forward

John Gilson, Esmee VanWijk, Birgit Klein, Megan Scanderbeg

Configuration Parameters

• Configuration parameters are float settings, not
measurements reported by the float.

• Located in the meta netCDF files

• Historically, input was not standardised, not all
information required was reported and fields were
populated incorrectly.

• Argo now requires pre-approved and standardised
configuration parameters.

• Scheme adopted is similar to the technical files.

• All configuration parameters are identified by a
CONFIG_* prefix.

Typically, an Argo float configuration is valid for the life of the float
(one configuration) CONFIG_MISSION_NUMBER = 0 (launch or
pre-deployment info) and 1 (basic mission)

For floats with multiple configurations, the configuration from the first
cycle is set to 1. Each subsequent configuration change has a new
mission number, i.e. from 1 to N.

Argo best practice is a minimum of configuration missions.

Mission Parameters

 CONFIG_MISSION_NUMBER

Configuration Parameters

• For each configuration parameter the name and value of the parameter are
recorded.

• Users can identify which mission belongs to which cycle from the:
CONFIGURATION_MISSION_NUMBER (N_CYCLE)

NAME DEFINITION COMMENT

CONFIG_PARAMETE
R_NAME

char CONFIG_PARAMETER_NAME (N_CONF_PARAM,
STRING128)
CONFIG_PARAMETER_NAME:_FillValue = " ";

Name of the configuration
parameter. Example :
“CONFIG_ParkPressure_dBA
R” See reference table 14b

CONFIG_PARAMETE
R_VALUE

int CONFIG_ PARAMETER_VALUE (N_MISSIONS,
N_CONF_PARAM)
CONFIG_ PARAMETER_VALUE:_FillValue = " ";

Value of the configuration
parameter. Example : "1500"

CONFIG_MISSION_
NUMBER

int CONFIG_MISSION_NUMBER (N_MISSIONS);
CONFIG_MISSION_NUMBER:conventions = "0..N, 0
: launch mission (if exists), 1 : first complete
mission"; CONFIG_MISSION_NUMBER:_FillValue =
99999;

Unique number of the
mission to which this
parameter belongs. Example
: 0 See note on floats with
multiple configurations.

CONFIG_MISSION_
COMMENT

char CONFIGURATION_MISSION_COMM ENT
(N_MISSIONS, STRING256)
CONFIGURATION_MISSION_COMMENT: FillValue= "
";

Comment on this
configuration mission.
Example : “This mission
follows a 1000 dbar meddie
during parking”

Background: Present CONFIG Procedures
- Fully 'Curated' Core CONFIG (Meta) table, with “Mandatory”, “Highly
Desirable”, and “Optional” members (as of January 2017: 185 names)

- Curation encompases the suggestion of standard names and the limiting
of redundancies

- GDAC File Checker confirms only that a CONFIG within the meta netCDF
is found within the table.

Background: Present CONFIG Procedures
- Fully 'Curated' Core CONFIG (Meta) table, with “Mandatory”, “Highly
Desirable”, and “Optional” members (as of January 2017: 185 names)

- Curation encompases the suggestion of standard names and the limiting
of redundancies

- GDAC File Checker confirms only that a CONFIG within the meta netCDF
is found within the table.

Issues
(1) Length of table is increasing quickly with more complicated floats (e.g. 2-
way communication, additional sensors, etc.). To fulfill the 'Curation' goals,
expertise of all float types behavior/data packing is necessary. With 185
CONFIGs (and growing), this requires significant resources.

Background: Present CONFIG Procedures
- Fully 'Curated' Core CONFIG (Meta) table, with “Mandatory”, “Highly
Desirable”, and “Optional” members (as of January 2017: 185 names)

- Curation encompases the suggestion of standard names and the limiting
of redundancies

- GDAC File Checker confirms only that a CONFIG within the meta netCDF
is found within the table.

Issues
(1) Length of table is increasing quickly with more complicated floats (e.g. 2-
way communication, additional sensors, etc.). To fulfill the 'Curation' goals,
expertise of all float types behavior/data packing is necessary. With 185
CONFIGs (and growing), this requires significant resources.

(2) Inclusion of mandatory CONFIGs is inconsistent across DACs/floats.

Background: Present CONFIG Procedures
- Fully 'Curated' Core CONFIG (Meta) table, with “Mandatory”, “Highly
Desirable”, and “Optional” members (as of January 2017: 185 names)

- Curation encompases the suggestion of standard names and the limiting
of redundancies

- GDAC File Checker confirms only that a CONFIG within the meta netCDF
is found within the table.

Issues
(1) Length of table is increasing quickly with more complicated floats (e.g. 2-
way communication, additional sensors, etc.). To fulfill the 'Curation' goals,
expertise of all float types behavior/data packing is necessary. With 185
CONFIGs (and growing), this requires significant resources.

(2) Inclusion of mandatory CONFIGs is inconsistent across DACs/floats.

(3) No formal procedure to confirm that mandatory CONFIGs are found
within the Meta netCDF (GDAC File Checker or census)

In meta netCDF V2, many “float cycle” parameters had their own variables. Now in
meta netCDF V3 they are placed in the CONFIG variable. How are we doing placing
this information in the file? Mandatory (if applicable), Highly desirable (if applicable)

 CONFIG_
DAC

Park
Time

Cycle
Time

Surface
TimeOut

Park
Pres

Profile
Pres.

AscentTo
Surface

TimeOut*

Descent
ToPark

TimeOut

Descent
ToProf

TimeOut

AOML (5955) 46 46 46 100 100 89 59 30

PMEL (923) 0 0 0 100 100 96 0 0

SIO (1531) 100 100 100 100 100 100 99 100

UW (1582) 0 0 0 100 100 85 35 0

WHOI (1279) 90 90 90 100 100 90 90 20

BODC (527) 0 0 0 98 96 42 42 42

CORIOLIS (1434) 0 100 44 100 100 15 15 53

CSIO (344) 0 100 3 100 100 5 5 5

CSIRO (748) 53 53 53 98 98 97 65 65

INCOIS (241) 68 93 90 100 100 7 7 8

JMA (1451) 100 100 18 98 100 56 14 14

MEDS (435) 0 0 0 100 100 100 0 0

NMDIS (15) 0 100 0 100 100 0 0 0

As presented at ADMT17

Recent Discussions at AST-17/ADMT-18
Issues

(1) Length of table is increasing quickly with more complicated floats

To address (1), it has been previously agreed upon to divide the CONFIG
table into 'Curated' and 'Non-Curated' parts. Easier said then done!

What to keep in 'Curated'? CONFIGs that can aid in...

– Bias detection (e.g. surface pressure offset, ascent rate etc.)
– Health of float or sensor (minimum pressure of CTD pump shut off)
– Mission CONFIGs with O(1) effect on trajectory estimation.

• Many currently 'Mandatory' in table (e.g. CycleTime)
• Mission modes (ice algorithm, Prescibed actions at set time/date,

etc.)

A first pass at the CONFIG table with this filter results in....

– ~70 Curated CONFIGs
– Mandatory: 18 non-Mode (note that not all will be applicable to all floats)

– Highly Desirable: 4 non-Mode
– Mode: ~30

Real World Use of a Split Table
The Curated List

– Will have Mandatory, Highly Desirable, and Optional CONFIGs
– Uniqueness of the CONFIG will be maintained against all Curated

and Non-Curated CONFIGs
– New Curated CONFIGs can be added if they fall under one of the

previously mentioned categories

The Non-Curated List
– Optional CONFIGs only
– Uniqueness is not guaranteed against other Non-Curated CONFIGs
– New CONFIGs can be requested by all, with minimal checking by

curators (e.g. spelling, best practice naming)

DACs are free to choose what subset if any of non-Mandatory CONFIGs
they wish to add to the META netCDF. Most DACs will generally have a
small ‘critical’ subset

Introduce a 'status' column that aids in maintenance of table. If it is
 necessary to remove a CONFIG that is in use, the status can alert
the DAC to phase out the CONFIG over a set amount of time.

Odds & Ends / What's next

Some basic, Mandatory (for all floats) CONFIGs will need to be estimated by
the DAC as they are not returned directly by the float (e.g. CYCLETIME).
This is not a new request, it has been asked of the DACs since the first meta
netCDF.

Mission Modes are defined in the proposed new Core CONFIG table and
receive a Mandatory status. Examples are...

– CONFIG_BitMaskMonthsIceDetectionActive (old)
– CONFIG_ClockPrescribedActive (new)

These Modes describe either choices within the firmware (former...attempt to
reach the surface or descend immediately due to ice) or non-standard float
behavior (latter...float targets the surface at midnight) that change the float
mission and are important knowledge for trajectory and scientific
interpretation of the data.

Shortly after AST-18, the proposed new CONFIG table will be released for the
greater Argo community for review and comment.

Issues with CONFIG information at GDAC
Issues

(2) Inclusion of mandatory CONFIGs is inconsistent across DACs/floats.

(3) No formal procedure to confirm that mandatory CONFIGs are found
within the Meta netCDF (GDAC File Checker or census)

At present there is no procedure to reduce the CONFIG inconsistency
across DACs and float types. There is no procedure to enforce that
mandatory CONFIGs are available to the user base. The CONFIG table, as
it currently exists, does not always provide enough information to DACs on
how best to choose CONFIGs

For example: CONFIG_Direction (Mandatory for both V2 and V3 netCDf file types)

Percentage of V3.1 META netCDF that contains the CONFIG

CONFIG_CycleTime (Mandatory for both V2 and V3 netCDF file types)

DAC AOML BODC CORIOLIS CSIO CSIRO INCOIS JMA KMA KORDI MEDS NMDIS

% 46 2 100 100 50 88 100 100 N/A 100 100

Discussion

What can be done to improve the issues with CONFIG data at the GDAC?
Time? : past experience says this is likely to be insufficient
Census? : Worked with pressure drift paired with very strong guidance from
AST. Hasn't been as effective for other issues.
GDAC File Checker? : Yes it is possible says Mark. CONFIGs that are
 mandatory for all, can be simply implemented. Float-specific CONFIGs,
which are the majority, require an unambiguous link between float type
and the CONFIG. This idea has been discussed before.....

• Standard Format ID
• An accurate CONFIG vs Float Type will go a long way..

This proposed table now has fewer Curated CONFIGs simplifying
maintenance of CONFIG vs Float Type records.

Many of the mandatory CONFIGs are broadly applicable (e.g. UPTIME for
APEX family).

What amount of effort on the part of Argo is warranted?
Do we wish to go down the format checker path?

Real World Use of a Split Table with
GDAC File Checker (Proposal)

The Curated List

– Mandatory CONFIGs will be checked against float type to confirm
their necessary presence in the META netCDF file. Alternatively, Float
types where the CONFIG is not applicable cannot contain it within the
netCDF.

– Optional CONFIGs will cause a netCDF file rejection if the CONFIG is
not applicable to the float type. The netCDF file is not rejected if a
DAC chooses not to include the CONFIG whether it is applicable or
not for the float type

– Highly-Desirable CONFIGs follow similar rules to 'Optional' above.
The designation makes known the Argo Programs strong preference
for the inclusion of the CONFIG.

The Non-Curated List

– The File Checker will only confirm, similar to the present behavior,
that the CONFIG name is found within the CONFIG table

