The South African Argo Program presently is one of deployment opportunities and educational outreach as opposed to procuring of floats and seeding the global Argo array. However, we are striving to develop projects and funding opportunities in that direction. Given South Africa’s unique position geographically of bordering three oceans – The Atlantic, Indian and Southern Oceans – we are able to provide numerous deployment opportunities for Argo floats to the global array. We are also working on dynamic research programs and experiments using Argo floats to a) study physical forcing dynamics and b) contribute to the development of biogeochemical floats particularly in the Southern Ocean. The research groups currently involved in the South African Argo program are: The South African Weather Services (SAWS) – who are the National Focal Point, Bayworld Centre for Research and Education (BCRE), University of Cape Town (UCT), the Department of Environmental Affairs (DEA), The Council for Scientific and Industrial Research (CSIR), The South African Environmental Observation Network (SAEON), the Research Schooner Lady Amber and the Nansen-Tutu Centre for Marine Environmental Research.

1. Status of implementation (major achievements and problems in 2015):

 Floats deployed and their performance (please refer to Figure 1 for schematics of transect placements)

 Southern Ocean and South Atlantic Ocean:

 SAMBA Mooring Cruise – December 2015

 4 APEX floats: UK Met Office with DEA and SAEON

 (serial #'s: 7345, 7346, 7347, 7348)

 SANAE Cruise (RV SA Agulhas II) – November 2015-February 2016

 4 NOVA and 1 DOVA floats from the Argo-Italy program.

 WMO numbers: 3002340 - 063609390/ 063606400/ 62787180/ 62785180/ 62788170

 Indian Ocean:

 None

 Technical issues encountered and solved:

 No updates on the issues reported on in AST-16 report.

 Status of contributions to Argo data management (including status of conversion to V3 file formats, pressure corrections, etc)

 None

 Status of delayed mode quality control processes:

 Not applicable

2. Present level of (and future prospects for) national funding for Argo including summary of human resources devoted to Argo:
Dedicated Argo funding to procure new floats to seed the global array is currently being investigated through the South African Environmental Observation Network (SAEON). Individuals from organisations (listed above) work on different projects involving Argo floats and have come together under the auspices of the South African Argo program to share knowledge, resources, cruise time where applicable and information regarding Argo. We are working towards taking this forward now.

We have one Argo representative for the South African Marine Science community who is also looking to drive the Argo float procurements and data management plans in future endeavours.

3. Summary of deployment plans (level of commitment, areas of float deployment, low or high resolution profiles, extra sensors, Deep Argo) and other commitments to Argo (data management) for the upcoming year and beyond where possible:

Southern Ocean:

Marion Island Cruise (RV SA Agulhas II) – April/May 2016.

This cruise follows the CrossRoads Transect on Figure 1.

available for deployment assistance

This cruise follows the SAMBA Transect on Figure 1.

available for deployment assistance

This cruise follows the GoodHope Transect on Figure 1.

available for deployment assistance

Indian Ocean:

Agulhas System Climate Array (ASCA) deployment cruise – April 2016.

Refer to Figure 1 for positions.

4 APEX floats deployed on behalf of UK Met Office in to the Agulhas Current

This cruise will take place on the south coast of South Africa between Cape Town and Port Elizabeth.

available for deployment assistance

ACEP Transkei Coast Cruise (RV Algoa) – January – February 2017

This cruise will take place between Port Elizabeth and Durban in the Agulhas Current.

available for deployment assistance

International Indian Ocean Expedition (IIOE-2) Expeditions

Cruises are being developed for both the eastern and western Indian Ocean and these can be communicated for interested countries wanting to deploy Argo floats into the Indian
Ocean. The Research Schooner *Lady Amber* will also be taking part in these expeditions and her contact details are found below.

Atlantic Ocean:

SAMBA Mooring Array (RV *Algoa*) – September 2015.

Refer to Figure 1 for positions.

available for deployment assistance

![Figure 1: Large mooring array and CrossRoads transects around South Africa where floats could be deployed if available.](image)

Pacific Ocean: 2016-2017 (future plans):

The Research Schooner *Lady Amber* will be working with NASA from April 2016 to August 2017 on the Salinity Processes Upper-ocean Regional Study (SPURS-2) Experiment around 10° N and 125° W. There could be opportunities here to deploy Argo floats within the Pacific Ocean but also en route to and from the study region.

Contact: Capt. Peter Flanagan on explorerstrust.uk@yahoo.co.uk

4. **Summary of national research and operational uses of Argo data as well as contributions to Argo Regional Centers.** Please also include any links to national program Argo web pages to update links on the AST and AIC websites:

Three research and two outreach project are noted below:

a) **SOCCOM:**

Isabelle Ansorge

The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) are a focused group developing a new ocean observing system for carbon, nutrients and oxygen that will complement the already established observing system for heat and freshwater. To this end,
150-200 profiling floats equipped with biogeochemical sensors will be deployed throughout the Southern Ocean and the cruises run by UCT (Prof. Ansorge) in this region (i.e. SANAE and Gough Island) will be used as a platform for deployments.

b) **SOSCEX III:**

Pedro M.S. Monteiro, Sebastiaan Swart, Sandy Thomalla and Thato Mtshali

SOSCEX III is the focus of a suite of five NRF-SANAP projects funded for the 2015 – 2017 cycle. This forms a central part of the new Climate focused research theme in the Southern Ocean as articulated in both ARESSA as well as the emerging Antarctic and Southern Ocean strategy of the NRF-DST. It is our aim to attract wider collaboration from national, regional and international partners into this unique Climate – Carbon – Ecosystems research platform. To this end we will be publishing the more detailed SOSCEX III White Paper and focusing on linking up with the US based SOCOM initiative (using floats as central platforms) as well as inviting graduate student participation from Mozambique, Namibia and Zimbabwe.

Please refer to Appendix 1 for further information.

www.csir.co.za/nre/coasts_and_oceans/osc.html

c) **Validating Hycom-EnOI in the Agulhas using Argo profiling floats - The Nansen-Tutu Centre for Marine Environmental Research (UCT)**

Charine Collins, Björn Backeberg, François Counillon and Johnny Johannessen

The greater Agulhas Current system, one of the most energetic systems in the world, plays a key role in the global ocean circulation, regional weather, and the marine environment. A prediction system of the marine environment around southern Africa would not only be beneficial to regional commercial, industrial, and leisure activities, but it would also aid search and rescue activities, and the monitoring of accidental pollutants and harmful algal blooms.

Despite the emergence of various global prediction (operational data assimilation) systems (e.g. MyOcean, Blue-Link), there is hitherto no system for the southern African regional ocean. As a first attempt towards an ocean prediction system for southern Africa, A regional data assimilation system of the greater Agulhas system was developed recently (Backeberg et al., 2014). This system, while not operational yet, assimilates satellite altimeter along-track sea level anomaly (SLA) data into a HYbrid Coordinate Ocean Model (HYCOM) simulation of the Agulhas Current System using the Ensemble Optimal Interpolation (EnOI) data assimilation scheme (hereafter referred to as HYCOM-EnOI). While HYCOM-EnOI improved the meso-scale dynamics in the Agulhas Current system, as well as the water mass characteristics and velocities at ~1000m, there was a slight degradation of the SST distribution.

In this study, we assess the limitations of HYCOM-EnOI in reproducing the water mass properties of the Agulhas Current region through a detailed comparison with Argo profiling floats. A comparison between HYCOM-EnOI and the Argo profiling floats is made in terms of temperature and salinity differences at various depths, differences in water mass characteristics, and mixed layer depth.

The temperature values in the upper 100m simulated in HYCOM-EnOI are, for most of the region, in close agreement (±1°C) with the observations (Figure 3a). On the contrary there is an overestimation of the salinity values in the upper 100m simulated in HYCOM-EnOI by about 0.1psu (Figure3b). In the 500-1000m depth range, HYCOM-EnOI tends to underestimate temperature (Figure 3c) and salinity (Figure 3d) values south of the Agulhas bank, in the vicinity of the Agulhas Retroreflection region and the Agulhas Return Current. West of the Agulhas bank,
the temperature of HYCOM-EnOI is in good agreement with the observations (±1°C), however, there is again an overestimation of the salinity values by more than 0.1psu. In the deeper layers (1000-2000m, HYCOM-EnOI tends to underestimate the temperature and salinity throughout the region, except east of the Agulhas Bank where there is a good agreement with the observations.

d) Educational Outreach – The Argos Floats Program by SAEON Egagasini:

Thomas Mtontsi and Tamaryn Morris

Five secondary schools have been identified in the Western Cape region to track changes at sea from data collected on floats 1901469 and 1901470 purchased by SAEON/SANAP with support from SAWS and deployed in 2009.

In 2015 school monitoring teams were encouraged to do schools science projects on:

1. The Identification of deep water masses and their direction using temperature
2. Relationships between salinity and depth
3. Relations of temperature, pressure and salinity

The overall focus of the SAEON Egagasini education programme is to:
- primarily encourage awareness of science skills to learners
- to create a platform where Marine Science Research can be integrated into School Sciences curriculum by encouraging interactions between learners, educators and scientists
- to promote an understanding of, create awareness and generate an interest about our oceans

The four floats arriving for the ASCA cruise in April 2016 will also be “adopted” by the schools themselves to monitor in near-real time as ongoing school projects this year. Each school will get a chance to visit the research vessel and officially adopt their float as part of a school excursion. The deployment of the floats at sea in April will be documented for the schools and they will be notified by email so they can begin their projects and monitor how the floats behave in particular within the Agulhas Current.

e) Educational Outreach – The Research Schooner *Lady Amber*:

Capt Peter Flanagan

Continued effort is being made by Capt. Flanagan and his crew from the Research Schooner *Lady Amber* to bring awareness of the Argo program to secondary schools. Most notably in collaboration with the GLOBE project out of Mossel Bay.

5. Issues that your country wishes to be considered and resolved by the Argo Steering Team regarding the international operation of Argo. These might include tasks performed by the AIC, the coordination of activities at an international level and the performance of the Argo data system. If you have specific comments, please include them in your national report.

None at this stage.

6. To continue improving the quality and quantity of CTD cruise data being added to the reference database by Argo PIs, it is requested that you include any CTD station data that was taken at the time of float deployments this year. Additionally, please list CTD data (calibrated with bottle data) taken by your country in the past year that may be added to the reference database. These cruises could be ones designated for Argo calibration purposes only or could be cruises that are
open to the public. To help CCHDO track down this data, please list the dates of the cruise and the PI to contact about the data.

The following cruises were loaded onto the CLIVAR + Carbon Hydrographic Data Office (CCHDO) website for Argo data validation (please refer to Figure 1 above for transect placements):

- ASCA Mooring cruise – April 2015 data
- SAMBA Mooring cruise – December 2015 data
- CrossRoads Transect – April / May 2013
- CrossRoads Transect – April / May 2014
- CrossRoads Transect – April / May 2015

7. Keeping the Argo bibliography (http://www.argo.ucsd.edu/Bibliography.html) up to date and accurate is an important part of the Argo website. This document helps demonstrate the value of Argo and can possibly help countries when applying for continued Argo funding. We reached more than 2000 papers published using Argo data! To help me with this effort, please include a list of all papers published by scientists within your country in the past year using Argo data, including non-English publications. I've added a thesis citation list too (http://www.argo.ucsd.edu/argo_thesis.html). If you know of any doctorate theses published in your country that are missing from the list, please let me know

None at this stage.
APPENDIX 1:

The 3rd Southern Ocean Seasonal Cycle Experiment (SOSCEEx III)

Pedro M.S. Monteiro, Sebastiaan Swart, Sandy Thomalla and Thato Mtshali

Ocean Systems & Climate – CSIR, 15 Lower Hope Street, Rosebank 7700, South Africa

Email: pmonteir@csir.co.za

Introduction

Strategic Context
SOSCEX III is the focus of a suite of five NRF-SANAP projects funded for the 2015 – 2017 cycle. This forms a central part of the new Climate focused research theme in the Southern Ocean as articulated in both ARESSA as well as the emerging Antarctic and Southern Ocean strategy of the NRF-DST. It is our aim to attract wider collaboration from national, regional and international partners into this unique Climate – Carbon – Ecosystems research platform. To this end we will be publishing the more detailed SOSCEX III White Paper and focusing on linking up with the US based SOCOM initiative (using floats as central platforms) as well as inviting graduate student participation from Mozambique, Namibia and Zimbabwe.

Science Context
The Southern Ocean is a key component of the earth system, being responsible for 50% of ocean uptake of atmospheric CO₂ and 30% of carbon export flux to the deep ocean (Schlitzer et al., 2002, Majkut et al., 2014). Climate models and decadal data sets predict changes in the Earth’s climate that will influence the effectiveness of the Southern Ocean CO₂ sink through adjustments to sea surface temperature, stratification and mixing (Boyd 2002), all of which affect the nutrient and light supply necessary for phytoplankton production (and associated carbon export). The challenge in predicting long term trends in the Southern Ocean carbon cycle lies in our ability to resolve interannual variability and the link between seasonal and intraseasonal dynamics in physical drivers and biogeochemical responses. Despite their importance, surface ocean processes at these scales are poorly understood and quantified due to operational limitations of ships and moorings. This has necessitated the use of autonomous, remotely sensed and modeling platforms that are able to address the temporal and spatial scale gaps in our knowledge of a hitherto under sampled ocean.

Aims

- Understanding through seasonal scale observations, the role of fine scale upper ocean physical dynamics on CO₂ fluxes and primary production in the Southern Ocean and its impact on large-scale carbon-climate sensitivities.
- To make a significant contribution to improving the way global climate models reflect CO₂ and primary productivity climate sensitivities in the Southern Ocean.
Approach

A novel aspect of SOSCEx III is the integrated multi-platform approach, which aims to explore new questions about the climate sensitivity of carbon and ecosystem dynamics and how these processes are parameterized in models.

1. **Observational**
 The observational approach employs the research ship together with robotics-based continuous year-round, high-resolution observations of the upper ocean. The primary objective is to understand how meso- to sub-mesoscale features (eddies and fronts) interact with seasonal to subseasonal scales (heating & transient storms) to characterize the seasonal cycle of upper ocean mixed layer depth, CO$_2$ fluxes Fe and light availability, primary production and associated carbon export.

2. **Modelling**
 A hierarchy of medium to ultra-high resolution forced ocean model domains (NEMO-PISCES) will be used to test our understanding of the links between surface boundary layer physical drivers and the biogeochemical response scales, especially in terms of air-sea CO$_2$ fluxes, ocean productivity and associated carbon export.

Cruise Plan

The observation plans are centered on three seasonal ship-based cruises of the Atlantic Sub-Antarctic Southern Ocean in winter 2015, summer 2015 and autumn 2016 spanned by continuous high resolution robotics-based observations. The primary aims of each cruise and required ship time are summarized below:

1. **Winter**
 - **Description:** Date: July – August 2015; Cape Town to 55$^\circ$S along GoodHope Line; Ship time: 21 Days; Berth requirements: 20
 - **Aim 1.** Two process stations in the SAZ with twinned glider deployments - surface wave glider and sub-surface buoyancy glider.
 - **Aim 2.** CTD deployments at each process station to provide a) winter Fe profile, b) biogeochemical measurements to characterize the plankton community and rates of production and c) necessary calibrations for the gliders.

2. **Summer**
 - **Leg 1**
 - **Description:** Date: November - December 2015; Cape Town to Antarctica along GoodHope Line on SANAE 55; Ship stopping time: 4 Days; Berth requirements: 10
 - **Aim 1.** Swap out buoyancy gliders and retrieve wave gliders (for overhaul and refurbishment) at both process stations in the SAZ
 - **Aim 2.** CTD deployments at each process station to provide a) early summer Fe profile, b) necessary calibrations for the gliders.

 - **Leg 2**
 - **Description:** Date: December 2015 - January 2016; Cape Town to 55$^\circ$S along GoodHope Line; Ship time: 35 Days; Berth requirements: 25
 - **Aim 1.** Redeployment of wave gliders at two process stations in SAZ to continue twinned sampling above of the buoyancy gliders.
 - **Aim 2:** Ship alternates sampling between two process stations for 21 days (sampling each every alternate day) to measure meso and sub mesoscale evolution of physical, chemical and biological response to sub seasonal storm event.
 - **Aim 3.** Deployment of Lagrangian bio-optics floats at each process station that continue sampling the SAZ till autumn 2016 completing a full seasonal cycle.
• Aim 3. CTD deployments at each process station to provide a) summer Fe profiles, b) time evolution of biogeochemical parameters, c) necessary calibrations for the gliders and floats.

Leg 3

• Description: Date: January - February 2015; Antarctica to Cape Town along GoodHope Line on SANAЕ 55 return voyage; Ship stopping time: 4 Days; Berth requirements: 10
• Aim 1. CTD deployments at each process station to provide a) late summer Fe profile, b) necessary calibrations for the gliders and floats.
• Aim 2. Retrieval of all buoyancy and wave-gliders at both process stations (floats continue sampling)

3. Autumn
• Description: Date: April – May 2016; Cape Town to Marion Island to 55°S to bio-optics float locations; Ship time: 10 Days; Berth requirements: 10
• Aim 1. CTD deployments at both Lagrangian bio-optics float locations to calibrate float sensors.
• Aim 2. Retrieval of both bio-optics floats.

List of critical requirements

• The redesign of the intake system of the scientific sea water supply to prevent blockage and subsequent pump damage when the pump enters the ice (or kelp beds surrounding subantarctic islands), such that oceanographic research can take place in the marginal ice zone (which dominates the time and spatial coverage of the SA Agulhas II on all SANAЕ voyages).
• Sufficient band width for efficient internet access particularly during glider and float deployment and retrievals.
• The use of the rubber duck (Zodiac) may be needed for float/glider retrievals, weather permitting.