

Bendtsen, J., C. R. Vives, and K. Richardson (2023), Primary production in the North Atlantic

Cai, W., et al. (2023), Antarctic shelf ocean warming and sea ice melt affected by projected El Niño changes, Nature Climate Change, 13(3), 235-239, doi: https://doi.org/10.1038/s41558-023-01610-x.

Chen, G., W. Han, X. Ma, Y. Li, T. Zhang, and D. Wang (2023), Role of Extreme Indian Ocean

Chidichimo, M. P., et al. (2023), Energetic overturning flows, dynamic interocean exchanges, and ocean warming observed in the South Atlantic, *Communications Earth & Environment*, 4(1), 10, doi: https://doi.org/10.1038/s43247-022-00644-x.

Dai, M., et al. (2023), Upper Ocean Biogeochemistry of the Oligotrophic North Pacific

Hauck, J., C. Nissen, P. Landschützer, C. Rödenbeck, S. Bushinsky, and A. Olsen (2023), Sparse observations induce large biases in estimates of the global ocean CO2 sink:
an ocean model subsampling experiment, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381(2249), 20220063, doi: https://doi.org/10.1098/rsta.2022.0063.

Huang, Y., Andrea J. Fassbender, and Seth M. Bushinsky (2023), Biogenic carbon pool production maintains the Southern Ocean carbon sink, Proceedings of the National Academy of Sciences, 120(18), e2217909120, doi: https://doi.org/10.1073/pnas.2217909120.

Jackson, L. C., and T. Petit (2023), North Atlantic overturning and water mass transformation in CMIP6 models, Climate Dynamics, 60(9), 2871-2891, doi: https://doi.org/10.1007/s00382-022-06448-1.

L’Hegaret, P., et al. (2023), Ocean cross-validated observations from R/Vs L’Atalante, Maria S. Merian, and Meteor and related platforms as part of the EUREC4A-OA/ATOMIC

Liu, J., D. Wang, T. Zu, K. Huang, and O. Y. W. Zhang (2023), Either IOD leading or ENSO leading triggers extreme thermohaline events in the central tropical Indian Ocean, Climate Dynamics, 60, 2113-2129, doi: https://doi.org/10.1007/s00382-022-06413-y.

Ma, X., G. Huang, X. Li, and S. Li (2023), The potential mechanisms of the dominant timescale of AMOC multidecadal variability in CMIP6/CMIP5 preindustrial

Mignot, A., et al. (2023), Using machine learning and Biogeochemical-Argo (BGC-Argo)

Paladini de Mendoza, F., K. Schroeder, S. Miserocchi, M. Borghini, P. Giordano, J. Chiggiato, F. Trincardi, A. Amorosi, and L. Langone (2023), Sediment resuspension and

Silver, A., A. Gangopadhyay, G. Gawarkiewicz, P. Frantoni, and J. Clark (2023), Increased gulf stream warm core ring formations contributes to an observed increase in salinity maximum intrusions on the Northeast Shelf, *Scientific Reports*, 13(1), 7538, doi: https://doi.org/10.1038/s41598-023-34494-0.

Song, S.-Y., S.-W. Yeh, H. Kim, and N. J. Holbrook (2023), Arctic warming contributes to increase in Northeast Pacific marine heatwave days over the past decades, *Communications Earth & Environment*, 4(1), 25, doi: https://doi.org/10.1038/s43247-023-00683-y.

Su, F., et al. (2023), Widespread global disparities between modelled and observed mid-depth ocean currents, *Nature Communications*, 14(1), 2089, doi: https://doi.org/10.1038/s41467-023-37841-x.

Thandlam, V., H. Rahaman, A. Rutgersson, E. Sahlee, M. Ravichandran, and S. S. V. S. Ramakrishna (2023), Quantifying the role of antecedent Southwestern Indian Ocean capacitance on the summer monsoon rainfall variability over homogeneous regions of India, *Scientific Reports*, 13(1), 5553, doi: https://doi.org/10.1038/s41598-023-32840-w.

Thoppil, P. G. (2023), Enhanced phytoplankton bloom triggered by atmospheric high-pressure systems over the Northern Arabian Sea, *Scientific Reports*, 13(1), 769, doi: https://doi.org/10.1038/s41598-023-27785-z.

Wang, Q., and X. Li (2023), Interannual variability and mechanism of ocean stratification over the Kuroshio Extension region in the warm season, *Climate Dynamics*, doi: https://doi.org/10.1007/s00382-023-06753-3.

Arbic, B. K. (2022), Incorporating tides and internal gravity waves within global ocean general circulation models: A review, *Prog. Oceanogr.*, 206, 102824, doi:

Beaton, A. D., et al. (2022), Lab-on-Chip for In Situ Analysis of Nutrients in the Deep Sea, ACS Sensors, 7(1), 89-98, doi: https://doi.org/10.1021/acssensors.1c01685.

Chacko, N., and C. Jayaram (2022), Response of the Bay of Bengal to super cyclone Amphan examined using synergistic satellite and in-situ observations, *Oceanologia*, 64(1),

Chen, W., Y. Zhang, Y. Liu, L. Ma, H. Wang, K. Ren, and S. Chen (2022), Parametric Model for Eddies-Induced Sound Speed Anomaly in Five Active Mesoscale Eddy Regions,

Cui, W., J. Yang, Y. Jia, and J. Zhang (2022), Oceanic Eddy Detection and Analysis from
Satellite-Derived SSH and SST Fields in the Kuroshio Extension, Remote Sensing, 14(22), doi: https://doi.org/10.3390/rs14225776.

Di Biagio, V., S. Salon, L. Feudale, and G. Cossarini (2022), Subsurface oxygen maximum in

Feucher, C., E. Portela, N. Kolodziejczyk, and V. Thierry (2022), Subpolar gyre decadal variability explains the recent oxygenation in the Irminger Sea, *Communications Earth & Environment*, 3(1), 279, doi: https://doi.org/10.1038/s43247-022-00570-y.

Fujiki, T., S. Hosoda, and N. Harada (2022), Phytoplankton blooms in summer and autumn in the northwestern subarctic Pacific detected by the mooring and float systems, *J. Oceanogr.*, 78(2), 63-72, doi: https://doi.org/10.1007/s10872-021-00628-z.

Girishkumar, M. S. (2022), Surface chlorophyll blooms in the Southern Bay of Bengal during the extreme positive Indian Ocean dipole, *Climate Dynamics*, 59(5), 1505-1519, doi: https://doi.org/10.1007/s00382-021-06050-x.

Heye, S., M. Krug, P. Penven, and M. Hart-Davis (2022), The Natal Bight Coastal

Hu, R., Z. Li, and D. Wu (2022), A comparative analysis of the mesoscale thermohaline

Jeon, J., and T. Tomita (2022), Investigating the Effects of Super Typhoon HAGIBIS in the

Kerry, C. G., and B. S. Powell (2022), Including Tides Improves Subtidal Prediction in a Region of Strong Surface and Internal Tides and Energetic Mesoscale Circulation, *Journal of Geophysical Research: Oceans*, 127(6), e2021JC018314, doi:

Li, X., X. Cheng, J. Fei, and X. Huang (2022), A Numerical Study on the Role of Mesoscale

Mackay, N., A. J. Watson, P. Suntharalingam, Z. Chen, and P. Landschützer (2022), Improved winter data coverage of the Southern Ocean CO2 sink from extrapolation of summertime observations, *Communications Earth & Environment*, 3(1), 265, doi: https://doi.org/10.1038/s43247-022-00592-6.

Mao, K., F. Gao, S. Zhang, and C. Liu (2022), An Initial Field Intelligent Correcting Algorithm for Numerical Forecasting Based on Artificial Neural Networks under the Conditions of Limited Observations: Part I—Focusing on Ocean Temperature, *Journal of

Martín-Gómez, V., E. Mohino, B. Rodríguez-Fonseca, and E. Sánchez-Gómez (2022), Understanding rainfall prediction skill over the Sahel in NMME seasonal forecast, Climate Dynamics, 59(9), 3113-3133, doi: https://doi.org/10.1007/s00382-022-06263-8.

McAdam, R., S. Masina, M. Balmaseda, S. Gualdi, R. Senan, and M. Mayer (2022), Seasonal forecast skill of upper-ocean heat content in coupled high-resolution systems, Climate Dynamics, doi: https://doi.org/10.1007/s00382-021-06101-3.

Menaka, D., S. Gauni, G. Indiran, R. Venkatesan, and M. Arul Muthiah (2022), A Heuristic

Moteki, Q. (2022), Validation of satellite-based sea surface temperature products against in situ observations off the western coast of Sumatra, *Scientific Reports*, 12(1), 92, doi: https://doi.org/10.1038/s41598-021-04156-0.

Nakanowatari, T., J. Xie, L. Bertino, M. Matsueda, A. Yamagami, and J. Inoue (2022), Ensemble forecast experiments of summertime sea ice in the Arctic Ocean using the

Ohishi, S., T. Hihara, H. Aiki, J. Ishizaka, Y. Miyazawa, M. Kachi, and T. Miyoshi (2022), An ensemble Kalman filter system with the Stony Brook Parallel Ocean Model v1.0, *Geosci. Model Dev.*, 15(22), 8395-8410, doi:

Pandey, R. S., and Y.-A. Liou (2022), Sea surface temperature (SST) and SST anomaly (SSTA) datasets over the last four decades (1977–2016) during typhoon season (May to November) in the entire Global Ocean, North Pacific Ocean, Philippine Sea, South China sea, and Eastern China Sea, *Data in Brief*, 45, 108646, doi: https://doi.org/10.1016/j.dib.2022.108646.

Qu, K., B. Zou, and J. Zhou (2022), Rapid environmental assessment in the South China Sea:

Ren, Q., F. Yu, F. Nan, Y. Li, J. Wang, Y. Liu, and Z. Chen (2022), Effects of mesoscale eddies on intraseasonal variability of intermediate water east of Taiwan, *Scientific Reports*, 12(1), 9182, doi: https://doi.org/10.1038/s41598-022-13274-2.

Roberts, S. M., P. N. Halpin, and J. S. Clark (2022), Jointly modeling marine species to inform the effects of environmental change on an ecological community in the Northwest Atlantic, Scientific Reports, 12(1), 132, doi: https://doi.org/10.1038/s41598-021-04110-0.

Rühs, S., C. Schmidt, R. Schubert, T. G. Schulzki, F. U. Schwarzkopf, D. Le Bars, and A. Biastoch (2022), Robust estimates for the decadal evolution of Agulhas leakage from the 1960s to the 2010s, Communications Earth & Environment, 3(1), 318, doi: https://doi.org/10.1038/s43247-022-00643-y.

Stolzenberger, S., R. Rietbroek, C. Wekerle, B. Uebbing, and J. Kusche (2022), Simulated

Tan, S., J. Shi, G. Wang, X. Xing, and H. Lü (2022), A case study of the westward transport of

Ushijima, Y., and Y. Yoshikawa (2022), Nonlinearly interacting entrainment due to shear and convection in the surface ocean, *Scientific Reports, 12*(1), 9899, doi: https://doi.org/10.1038/s41598-022-14098-w.

Wang, Q., Z. Qiu, S. Yang, H. Li, and X. Li (2022), Design and experimental research of a novel deep-sea self-sustaining profiling float for observing the northeast off the Luzon Island, Scientific Reports, 12(1), 18885, doi: https://doi.org/10.1038/s41598-022-23208-7.

Zhang, L., M. Jiang, and F. Jing (2022), Sea temperature variation associated with the 2021 Haiti Mw 7.2 earthquake and possible mechanism, *Geomatics, Natural Hazards and Risk*, 13(1), 2840-2863, doi: https://doi.org/10.1080/19475705.2022.2137439.

Zhang, Q., F. Yu, and G. Chen (2022), Site selection for the validation of wide-swath

Zhang, W., and D. Gu (2022), Geostationary satellite reveals increasing marine isoprene emissions in the center of the equatorial Pacific Ocean, *npj Climate and Atmospheric Science*, 5(1), 83, doi: https://doi.org/10.1038/s41612-022-00311-0.

Zheng, H., Y. Ma, J. Huang, J. Yang, D. Su, F. Yang, and X. H. Wang (2022), Deriving vertical

Camus, L., et al. (2021), Autonomous Surface and Underwater Vehicles as Effective Ecosystem Monitoring and Research Platforms in the Arctic—The Glider Project,

Diaz, B. P., et al. (2021), Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic, *Nature Communications*, 12(1), 6634, doi: https://doi.org/10.1038/s41467-021-26836-1.

Gould, W. J., and S. A. Cunningham (2021), Global-scale patterns of observed sea surface salinity intensified since the 1870s, *Communications Earth & Environment*, 2(1), 76, doi: https://doi.org/10.1038/s43247-021-00161-3.

Jang, E., Y. J. Kim, J. Im, and Y.-G. Park (2021), Improvement of SMAP sea surface salinity in...

Johns, W. E., M. Devana, A. Houk, and S. Zou (2021), Moored Observations of the Iceland-Scotland Overflow Plume Along the Eastern Flank of the Reykjanes Ridge,

Kenigson, J. S., R. Gelderloos, and G. E. Manucharyan (2021), Vertical Structure of the Beaufort Gyre Halocline and the Crucial Role of the Depth-Dependent Eddy

Kobayashi, T., K. Sato, and B. A. King (2021), Observed features of salinity bias with negative pressure dependency for measurements by SBE 41CP and SBE 61 CTD sensors on
deep profiling floats, Prog. Oceanogr., 198, 102686, doi: https://doi.org/10.17882/42182#68322.

Kurian, J., P. Li, P. Chang, C. M. Patricola, and J. Small (2021), Impact of the Benguela coastal low-level jet on the southeast tropical Atlantic SST bias in a regional ocean model, Climate Dynamics, doi: https://doi.org/10.1007/s00382-020-05616-5.

Kuttippurath, J., N. Sunanda, M. V. Martin, and K. Chakraborty (2021), Tropical storms trigger
phytoplankton blooms in the deserts of north Indian Ocean, npj Climate and Atmospheric Science, 4(1), 11, doi: https://doi.org/10.1038/s41612-021-00166-x.

Li, D., Z. Gao, and D. Song (2021), Analysis of environmental factors affecting the large-scale

Liu, B., W. Wan, Z. Guo, R. Ji, T. Wang, G. Tang, Y. Cui, and Y. Hong (2021), First Assessment

Liu, H., S. Li, and Z. Wei (2021), Interannual variability in the subduction of the South Atlantic subtropical underwater, Climate Dynamics, 57(3), 1061-1077, doi: https://doi.org/10.1007/s00382-021-05758-0.

Liu, Y., H. LÜ, H. Zhang, Y. Cui, and X. Xing (2021), Effects of ocean eddies on the tropical storm Roanu intensity in the Bay of Bengal, PLOS ONE, 16(3), e0247521, doi: https://doi.org/10.1371/journal.pone.0247521.

Lo Monaco, C., N. Metzl, J. Fin, C. Mignon, P. Cuet, E. Douville, M. Gehlen, T. T. T. Chau, and A. Tribollet (2021), Distribution and long-term change of the sea surface carbonate

Masuda, S., and S. Osafune (2021), Ocean state estimations for synthesis of ocean-mixing

Moreira, L., A. Cazenave, A. Barnoud, and J. Chen (2021), Sea-Level Fingerprints Due to Present-Day Water Mass Redistribution in Observed Sea-Level Data, Remote Sensing, 13(22), doi.

Organelli, E., E. Leymarie, O. Zielinski, J. Uitz, F. D’Ortenzio, and H. Claustre (2021),

Qi, Y., H. Mao, X. Wang, L. Yu, S. Lian, X. Li, and X. Shang (2021), Suppressed Thermocline Mixing in the Center of Anticyclonic Eddy in the North South China Sea, *Journal of

Qiu, Y., X. Lin, and C. Jing (2021), Recurrence of wintertime SST anomalies in the Bay of Bengal: characteristics and causes, Climate Dynamics, doi: https://doi.org/10.1007/s00382-021-05693-0.

Sallée, J.-B., V. Pellichiero, C. Akhoudas, E. Pauthenet, L. Vignes, S. Schmidtko, A. N. Garabato, P. Sutherland, and M. Kuusela (2021), Summertime increases in upper-ocean
stratification and mixed-layer depth, *Nature*, 591(7851), 592-598, doi: https://doi.org/10.1038/s41586-021-03303-x.

Shi, J.-R., L. D. Talley, S.-P. Xie, Q. Peng, and W. Liu (2021), Ocean warming and accelerating...

Sil, S., A. Gangopadhyay, G. Gawarkiewicz, and S. Pramanik (2021), Shifting seasonality of cyclones and western boundary current interactions in Bay of Bengal as observed during Amphan and Fani, *Scientific Reports*, 11(1), 22052, doi: https://doi.org/10.1038/s41598-021-0359-8.

Stegner, A., B. Le Vu, F. Dumas, M. A. Ghannami, A. Nicolle, C. Durand, and Y. Faugere

Thoppil, P. G., et al. (2021), Ensemble forecasting greatly expands the prediction horizon for ocean mesoscale variability, Communications Earth & Environment, 2(1), 89, doi: https://doi.org/10.1038/s43247-021-00151-5.

Trott, C. B., B. Subrahmanyam, and C. E. Washburn (2021), Investigating the Response of Temperature and Salinity in the Agulhas Current Region to ENSO Events, Remote

Wang, J., J. A. Church, X. Zhang, and X. Chen (2021), Reconciling global mean and regional sea level change in projections and observations, *Nature Communications*, 12(1), 990, doi: https://doi.org/10.1038/s41467-021-21265-6.

Xia, R., B. Li, and C. Chen (2021), Response of the mixed layer depth and subduction rate in

Yang, C., F. E. Leonelli, S. Marullo, V. Artale, H. Beggs, B. B. Nardelli, T. M. Chin, V. De Toma, S. Good, and B. Huang (2021), Sea Surface Temperature Intercomparison in the
Framework of the Copernicus Climate Change Service (C3S), J. Clim., 34(13), 5257-5283, doi: https://doi.org/10.1175/JCLI-D-20-0793.1.

Zhang, H., and A. Ignatov (2021), A Completeness and Complementarity Analysis of the Data Sources in the NOAA In Situ Sea Surface Temperature Quality Monitor (iQuam) System, Remote Sensing, 13(18), doi: https://doi.org/10.3390/rs13183741.

Zhang, R., and M. Thomas (2021), Horizontal circulation across density surfaces contributes substantially to the long-term mean northern Atlantic Meridional Overturning Circulation, Communications Earth & Environment, 2(1), 112, doi: https://doi.org/10.1038/s43247-021-00182-y.

Zhang, S., Z. Yu, X. Gong, Y. Wang, F. Chang, G. Lohmann, Y. Qi, and T. Li (2021), Precession cycles of the El Niño/Southern oscillation-like system controlled by Pacific
upper-ocean stratification, *Communications Earth & Environment*, 2(1), 239, doi: https://doi.org/10.1038/s43247-021-00305-5.

2020 (546)

Brokaw, R. J., B. Subrahmanyam, C. B. Trott, and A. Chaigneau, 2020: Eddy Surface Characteristics and Vertical Structure in the Gulf of Mexico from Satellite Observations and Model Simulations. Journal of Geophysical Research: Oceans, 125,

Advances in Modeling Earth Systems, 12, e2019MS001888, https://doi.org/10.1029/2019MS001888
Chen, J., B. Tapley, C. Wilson, A. Cazenave, K.-W. Seo, and J.-S. Kim, 2020: Global Ocean Mass Change From GRACE and GRACE Follow-On and Altimeter and Argo

Colberg, F., G. B. Brassington, P. Sandery, P. Sakov, and S. Aijaz, 2020: High and medium

de Marez, C., X. Carton, P. L’Hégarret, T. Meunier, A. Stegner, B. Le Vu, and M. Morvan, 2020: Oceanic vortex mergers are not isolated but influenced by the β-effect and surrounding eddies. *Scientific Reports, 10*, 2897, https://doi.org/10.1038/s41598-020-59800-y

and enhanced diapycnal mixing in the northwest Pacific Ocean. *Oceanologia et Limnologia Sinica*, **51**, 1301-1309,

Haumann, F. A., N. Gruber, and M. Münnich, 2020: Sea-Ice Induced Southern Ocean

Ioannou, A., A. Stegner, F. Dumas, and B. Le Vu, 2020: Three-Dimensional Evolution of

Iqbal, K., S. Piao, and M. Zhang, 2020: Decadal Spatiotemporal Halocline Analysis by ISAS15 Due to Influx of Major Rivers in Oceans and Discrepancies Illustrated Near the Bay of Bengal. *Water, 12*, https://doi.org/10.3390/w12102886

Jithin, A. K. and P. A. Francis, 2020: Role of internal tide mixing in keeping the deep Andaman Sea warmer than the Bay of Bengal. *Scientific Reports, 10*, 11982, https://doi.org/10.1038/s41598-020-68708-6

Katsura, S., H. Ueno, H. Mitsudera, and S. Kouketsu, 2020: Spatial Distribution and

Kobashi, F., T. Nakano, N. Iwasaka, and T. Ogata, 2020: Decadal-scale variability of the North...
Pacific subtropical mode water and its influence on the pycnocline observed along 137°E. *Journal of Oceanography*, https://doi.org/10.1007/s10872-020-00579-x

Mayot, N., P. A. Matrai, A. Arjona, S. Bélanger, C. Marchese, T. Jaegler, M. Ardyna, and M.

Storlazzi, C. D., O. M. Cheriton, R. van Hooidonk, Z. Zhao, and R. Brainard, 2020: Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming. Scientific Reports, 10, 13435, https://doi.org/10.1038/s41598-020-70372-9

Zhu, 2020: Observing system experiments over the Atlantic Ocean with the REMO ocean data assimilation system (RODAS) into HYCOM. *Ocean Dynamics, 70*, 115-138, https://doi.org/10.1007/s10236-019-01309-8

Vidya, P. J., M. Ravichandran, M. P. Subeesh, S. Chatterjee, and N. M, 2020: Global warming hiatus contributed weakening of the Mascarene High in the Southern Indian Ocean. Scientific Reports, 10, 3255, https://doi.org/10.1038/s41598-020-5964-7

Wang, S., E. L. Kenchington, Z. Wang, I. Yashayaev, and A. J. Davies, 2020: 3-D ocean particle tracking modeling reveals extensive vertical movement and downstream interdependence of closed areas in the northwest Atlantic. *Scientific Reports, 10*, 21421, https://doi.org/10.1038/s41598-020-76617-x

Wang, Y., Y. Li, and C. Wei, 2020: Subtropical sea surface salinity maxima in the South Indian

2019 (515)

Bilbao, R. A. F., J. M. Gregory, N. Bouttes, M. D. Palmer, and P. Stott (2019), Attribution of ocean temperature change to anthropogenic and natural forcings using the temporal, vertical and geographical structure, Climate Dynamics, doi:

Chatterjee, A., B. P. Kumar, S. Prakash, and P. Singh (2019), Annihilation of the Somali upwelling system during summer monsoon, *Scientific Reports*, 9(1), 7598, doi: https://doi.org/10.1038/s41598-019-44099-1.

observations in a submesoscale resolving ocean analysis/forecasting system, Ocean Model, 135, 40-55, doi: https://doi.org/10.1016/j.ocemod.2019.02.001.

Fujii, Y., et al. (2019), Observing System Evaluation Based on Ocean Data Assimilation and

Goes, M., M. Cirano, M. M. Mata, and S. Majumder (2019), Long-Term Monitoring of the

Kubryakov, A. A., A. S. Mikaelyan, and S. V. Stanichny (2019), Summer and winter coccolithophore blooms in the Black Sea and their impact on production of...

Li, Y., Q. Dong, and Y. Ren (2019), Aquarius Sea Surface Salinity Gridding Method Based on
Dual Quality–Distance Weighting, Remote Sensing, 11(9), 1131, doi: https://doi.org/10.3390/rs11091131.

Liu, C., X. Liang, R. M. Ponte, N. Vinogradoa, and O. Wang (2019), Vertical redistribution of salt and layered changes in global ocean salinity, Nature Communications, 10(1), 3445, doi: https://doi.org/10.1038/s41467-019-11436-x.

Liu, H., L. Yu, and X. Lin (2019), Recent Decadal Change in the North Atlantic Subtropical Underwater Associated With the Poleward Expansion of the Surface Salinity

Martín Míguez, B., et al. (2019), The European Marine Observation and Data Network

Mork, K. A., Ø. Skagseth, and H. Søiland (2019), Recent Warming and Freshening of the

Pramanik, S., S. Sil, S. Mandal, D. Dey, and A. Shee (2019), Role of interannual equatorial forcing on the subsurface temperature dipole in the Bay of Bengal during IOD and ENSO events, *Ocean Dyn.*, 69(11), 1253-1271, doi: https://doi.org/10.1007/s10236-019-01303-0.

Storto, A., et al. (2019), The added value of the multi-system spread information for ocean

2018 (393)

Briggs, E. M., T. R. Martz, L. D. Talley, M. R. Mazloff, and K. S. Johnson, 2018: Physical and Biological Drivers of Biogeochemical Tracers Within the Seasonal Sea Ice Zone of the

Cheng, L. and J. Zhu, 2018: 2017 was the warmest year on record for the global ocean. Advances in Atmospheric Sciences, 35, 261-263, https://doi.org/10.1007/s00376-018-8011-z

Cheng, L. and J. Zhu, 2018: 2017 was the warmest year on record for the global ocean. Advances in Atmospheric Sciences, 35, 261-263, https://doi.org/10.1007/s00376-018-8011-z

Fenyushkin, B. N., M. A. Sokolovskiy, and K. V. Lebedev, 2018: Evolution of an

Optimal Interpolation (EnOI). *Izvestiya, Atmospheric and Oceanic Physics*, **54**, 56-64, https://doi.org/10.1134/S0001433818010073

Liu, Y., W. Wang, and A. Kumar, 2018: Multiweek Prediction Skill Assessment of Arctic Sea
Ice Variability in the CFSv2. *Weather and Forecasting*, 33, 1453-1476, https://doi.org/10.1175/WAF-D-18-0046.1

microbial community respiration at Station ALOHA. *Journal of Marine Systems*, **184**, 28-35, https://doi.org/10.1016/j.jmarsys.2018.03.007

Ponte, R. M., K. J. Quinn, and C. G. Piecuch, 2018: Accounting for Gravitational Attraction and Loading Effects from Land Ice on Absolute Sea Level. *Journal of Atmospheric and Oceanic Technology*, **35**, 405-410, https://doi.org/10.1175/JTECH-D-17-0092.1

Reseghetti, F., L. Cheng, M. Borghini, I. M. Yashayaev, G. Raiteri, and J. Zhu, 2018:

Sandery, P., 2018: Data assimilation cycle length and observation impact in mesoscale ocean forecasting. Geosci. Model Dev., 11, 4011-4019, https://doi.org/10.5194/gmd-11-4011-2018

Storto, A., P. Oddo, A. Cipollone, I. Mirouze, and B. Lemieux-Dudon, 2018: Extending an oceanographic variational scheme to allow for affordable hybrid and
four-dimensional data assimilation. *Ocean Modelling, 128*, 67-86, https://doi.org/10.1016/j.ocemod.2018.06.005

Vigo, M. I., D. Garcia-Garcia, M. D. Sempere, and B. F. Chao, 2018: 3D Geostrophy and

Wang, X., W. Zhang, P. Wang, J. Yang, and H. Wang, 2018: Research on mid-depth current of basin scale in the South China Sea based on historical Argo observations. *Haiyang Xuebao*, **40**, 1-14,

Xing, X., N. Briggs, E. Boss, and H. Claustre, 2018: Improved correction for non-photochemical quenching of in situ chlorophyll fluorescence based on a
synchronous irradiance profile. Optics Express, 26, 24734-24751, https://doi.org/10.1364/OE.26.024734

Xu, J. and L. Gao, 2018: The temporal-spatial features of evaporation and precipitation and the effect on sea surface salinity in the tropical Indian Ocean. Haiyang Xuebao, 40, 90-102,

2017 (419)

Bhaskar, T. V. S., R. Venkat Shesu, T. P. Boyer, and E. Pattabhi Rama Rao, 2017: Quality...

Caniaux, G., L. Prieur, H. Giordani, and J. L. Redelsperger, 2017: An inverse method to derive

Reports, 7, 6199, https://dx.doi.org/10.1038%2Fs41598-017-06584-3
de Boisséson, E., M. A. Balmaseda, and M. Mayer, 2017: Ocean heat content variability in an ensemble of twentieth century ocean reanalyses. *Climate Dynamics*, https://doi.org/10.1007/s00382-017-3845-0

Frajka-Williams, E., C. Beaulieu, and A. Duchez, 2017: Emerging negative Atlantic
Multidecadal Oscillation index in spite of warm subtropics. *Scientific Reports, 7*, 11224, https://doi.org/10.1038/s41598-017-11046-x

Karmakar, A., A. Parekh, J. S. Chowdary, and C. Gnanaseelan, 2017: Inter comparison of Tropical Indian Ocean features in different ocean reanalysis products. *Climate Dynamics*, https://doi.org/10.1007/s00382-017-3910-8

Lin, S., W.-Z. Zhang, S.-P. Shang, and H.-S. Hong, 2017: Ocean response to typhoons in the

Lu, W., X.-H. Yan, L. Han, and Y. Jiang, 2017: One-dimensional ocean model with three types

Peterson, I., B. Greenan, D. Gilbert, and D. Hebert, 2017: Variability and wind forcing of ocean temperature and thermal fronts in the Slope Water region of the Northwest

Rudzin, J. E., L. K. Shay, B. Jaimes, and J. K. Brewster, 2017: Upper ocean observations in

Sandery, P. A. and P. Sakov, 2017: Ocean forecasting of mesoscale features can deteriorate by increasing model resolution towards the submesoscale. *Nature Communications*, **8**, 1566, https://doi.org/10.1038/s41467-017-01595-0

Strass, V. H., H. Leach, H. Prandke, M. Donnelly, A. U. Bracher, and D. A. Wolf-Gladrow, 2017: The physical environmental conditions for biogeochemical differences along the Antarctic Circumpolar Current in the Atlantic Sector during late austral summer

Wang, G., L. Cheng, J. Abraham, and C. Li, 2017: Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses. *Climate
Dynamics, https://doi.org/10.1007/s00382-017-3751-5

Zhou, C., X. Ding, J. Zhang, J. Yang, and Q. Ma, 2017: An objective algorithm for...
reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data. *Ocean Dynamics, 67*, 1523-1533, https://doi.org/10.1007/s10236-017-1104-x

2016 (407)

Alexeev, V. A., V. V. Ivanov, I. A. Repina, O. Y. Lavrova, and S. V. Stanichny, 2016: Convective structures in the Lofoten Basin based on satellite and Argo data. *Izvestiya, Atmospheric and Oceanic Physics, 52*, 1064-1077, http://dx.doi.org/10.1134/S0001433816090036

Capet, A., E. V. Stanev, J. M. Beckers, J. W. Murray, and M. Grégoire, 2016: Decline of the

Cheng, L., K. E. Trenberth, M. D. Palmer, J. Zhu, and J. P. Abraham, 2016: Observed and

Deng, Z. a., G. Wei, T. Yu, H. Wei, L. Kang, and L. Han, 2016: The diapycnal mixing in the upper Pacific estimated from GTSPP observations. Acta Oceanologica Sinica, 35,

Erickson, Z. K., A. F. Thompson, N. Cassar, J. Sprintall, and M. R. Mazloff, 2016: An advective...

Fu, L.-L., 2016: On the decadal trend of global mean sea level and its implication on ocean

Hernández-Guerra, A. and L. D. Talley, 2016: Meridional overturning transports at 30°S in

Hu, S., D. Hu, C. Guan, F. Wang, L. Zhang, F. Wang, and Q. Wang, 2016: Interannual Variability of the Mindanao Current/Undercurrent in Direct Observations and

Huang, X., Z. Chen, W. Zhao, Z. Zhang, C. Zhou, Q. Yang, and J. Tian, 2016: An extreme internal solitary wave event observed in the northern South China Sea. *Scientific Reports*, **6**, 30041, http://dx.doi.org/10.1038/srep30041

Isern-Fontanet, J., E. Olmedo, A. Turiel, J. Ballabrer-Poy, and E. García-Ladona, 2016:

Kaeriyama, H., Y. Shimizu, T. Setou, Y. Kumamoto, M. Okazaki, D. Ambe, and T. Ono, 2016:
Intrusion of Fukushima-derived radiocaesium into subsurface water due to formation of mode waters in the North Pacific. *Scientific Reports*, 6, 22010, http://dx.doi.org/10.1038/srep22010

Katavouta, A. and K. R. Thompson, 2016: Downscaling ocean conditions with application to the Gulf of Maine, Scotian Shelf and adjacent deep ocean. *Ocean Modelling*, 104, 54-72, http://dx.doi.org/10.1016/j.ocemod.2016.05.007

Kerry, C., B. Powell, M. Roughan, and P. Oke, 2016: Development and evaluation of a high-resolution reanalysis of the East Australian Current region using the Regional Ocean Modelling System (ROMS 3.4) and Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) data assimilation. *Geosci. Model Dev.*, 9, 3779-3801, http://www.geosci-model-dev.net/9/3779/2016/

Korotaev, G. K., P. N. Lishaev, and V. V. Knysh, 2016: Reconstruction of the three-dimensional salinity and temperature fields of the Black Sea on the basis of satellite altimetry measurements. *Izvestiya, Atmospheric and Oceanic Physics*, 52, 961-973, http://dx.doi.org/10.1134/S0001433816090152

http://dx.doi.org/10.1016/j.pocean.2016.09.001
Léger, F., C. Lebeauapin Brossier, H. Giordani, T. Arrouze, J. Beuvier, M.-N. Bouin, É. Bresson, V. Ducrocq, N. Fourrié, and M. Nuret, 2016: Dense water formation in the

Li, Y., W. Han, W. Wang, and M. Ravichandran, 2016: Intraseasonal Variability of SST and Precipitation in the Arabian Sea during the Indian Summer Monsoon: Impact of...

Liu, W., S.-P. Xie, and J. Lu, 2016: Tracking ocean heat uptake during the surface warming hiatus. *Nat Commun*, 7, http://dx.doi.org/10.1038/ncomms10926

Menezes, V. V., H. E. Phillips, M. L. Vianna, and N. L. Bindoff, 2016: Interannual variability of

Ohishi, S., T. Tozuka, and N. Komori, 2016: Frontolysis by surface heat flux in the Agulhas Return Current region with a focus on mixed layer processes: observation and a high-resolution CGCM. Climate Dynamics, 47, 3993-4007, http://dx.doi.org/10.1007/s00382-016-3056-0

Prants, S. V., V. B. Lobanov, M. V. Budyansky, and M. Y. Uleysky, 2016: Lagrangian analysis of

Sarkisyan, A. S., 2016: Main directions in the simulation of physical characteristics of the World Ocean and seas. *Izvestiya, Atmospheric and Oceanic Physics, 52*, 335-340, http://dx.doi.org/10.1134/S0001433816040101

Sedigh Marvasti, S., A. Gnanadesikan, A. A. Bidokhti, J. P. Dunne, and S. Ghader, 2016:

Beazley, L., E. Kenchington, I. Yashayaev, and F. J. Murillo, 2015: Drivers of epibenthic

Meteorological Society, 96, S74-S76, http://dx.doi.org/10.1175/2015BAMSStateoftheClimate.1

Cheng, L., F. Zheng, and J. Zhu, 2015: Distinctive ocean interior changes during the recent warming slowdown. *Scientific Reports, 5*, 14346, http://dx.doi.org/10.1038/srep14346

Dong, S., G. Goni, and R. Lumpkin, 2015: Mixed-layer salinity budget in the SPURS region on seasonal to interannual time scales. *Oceanography, 28*, 78-85, http://dx.doi.org/10.5670/oceanog.2015.05

d'Ovidio, F., A. Della Penna, T. W. Trull, F. Nencioli, M. I. Pujol, M. H. Rio, Y. H. Park, C. Cotté,

Heuzé, C., F. Vivier, J. Le Sommer, J. M. Molines, and T. Penduff, 2015: Can we map the

Ito, K., T. Kuroda, K. Saito, and A. Wada, 2015: Forecasting a Large Number of Tropical Cyclone Intensities around Japan Using a High-Resolution Atmosphere–Ocean Coupled Model. *Weather and Forecasting, 30*, 793-808, http://dx.doi.org/10.1175/WAF-D-14-00034.1

Journal of Marine Systems, 151, 1-14, http://dx.doi.org/10.1016/j.jmarsys.2015.06.004
Jana, S., A. Gangopadhyay, and A. Chakraborty, 2015: Impact of seasonal river input on the Bay of Bengal simulation. Continental Shelf Research, 104, 45-62, http://dx.doi.org/10.1016/j.csr.2015.05.001

Kim, H.-J. and J.-B. Ahn, 2015: Improvement in Prediction of the Arctic Oscillation with a Realistic Ocean Initial Condition in a CGCM. *Journal of Climate*, 28, 8951-8967, http://dx.doi.org/10.1175/JCLI-D-14-00457.1

Liu, Z., Y. Hou, and Q. Xie, 2015: Eddy formation and surface flow field in the Luzon Strait

McCarthy, G. D., D. A. Smeed, W. E. Johns, E. Frajka-Williams, B. I. Moat, D. Rayner, M. O.

Men, W., J. He, F. Wang, Y. Wen, Y. Li, J. Huang, and X. Yu, 2015: Radioactive status of seawater in the northwest Pacific more than one year after the Fukushima nuclear accident. *Sci. Rep., 5*, http://dx.doi.org/10.1038/srep07757

Osafune, S., S. Masuda, N. Sugiura, and T. Doi, 2015: Evaluation of the applicability of the

Raghukumar, K., C. A. Edwards, N. L. Goebel, G. Broquet, M. Veneziani, A. M. Moore, and J. P.

Sena Martins, M. and D. Stammer, 2015: Pacific Ocean surface freshwater variability

Sotillo, M. G., S. Cailleau, P. Lorente, B. Levier, R. Aznar, G. Reffray, A. Amo-Baladrón, J.

Wang, Z., I. Yashayaev, and B. Greenan, 2015: Seasonality of the inshore Labrador current over the Newfoundland shelf. *Continental Shelf Research, 100*, 1-10, https://doi.org/10.1016/j.csr.2015.03.010

White, R. H., 2015: Using multiple passive tracers to identify the importance of the North Brazil undercurrent for Atlantic cold tongue variability. *Quarterly Journal of the Royal Meteorological Society, 141*, 2505-2517, http://dx.doi.org/10.1002/qj.2536

2014 (359)

Backeberg, B. C., F. Counillon, J. A. Johannessen, and M. I. Pujol, 2014: Assimilating along-track SLA data using the EnOI in an eddy resolving model of the Agulhas system. *Ocean Dynamics, 64*, 1121-1136, http://dx.doi.org/10.1007/s10236-014-0717-6

Deng, Z. and T. Yu, 2014: Application of Argo-derived background diapycnal mixing in
HYCOM. *Journal of Marine Systems*, **137**, 1-12, http://dx.doi.org/10.1016/j.jmarsys.2014.04.005

Climate, 27, 1469-1487, http://dx.doi.org/10.1175/JCLI-D-12-00131.1
Keppenne, C. L., 2014: An ensemble recentering Kalman filter with an application to Argo temperature data assimilation into the NASA GEOS-5 coupled model. Ocean Modelling, 77, 50-55, http://dx.doi.org/10.1016/j.ocemod.2014.03.001
Krokos, G., D. Velaoras, G. Korres, L. Perivoliotis, and A. Theocharis, 2014: On the continuous functioning of an internal mechanism that drives the Eastern Mediterranean thermohaline circulation: The recent activation of the Aegean Sea as a dense water

Moon, J.-H. and Y. T. Song, 2014: Seasonal salinity stratifications in the near-surface layer

Xu, L., S.-P. Xie, J. L. McClean, Q. Liu, and H. Sasaki, 2014: Mesoscale eddy effects on the

Zeng, X., S. Peng, Z. Li, Y. Qi, and R. Chen, 2014: A reanalysis dataset of the South China Sea. *Scientific Data, 1*, http://dx.doi.org/10.1038/sdata.2014.52

2013 (302)

Ballent, A., S. Pando, A. Purser, M. F. Juliano, and L. Thomsen, 2013: Modelled transport of

Hu, Z.-Z., A. Kumar, B. Huang, and J. Zhu, 2013: Leading Modes of the Upper-Ocean Temperature Interannual Variability along the Equatorial Atlantic Ocean in NCEP GODAS. Journal of Climate, 26, 4649-4663, http://dx.doi.org/10.1175/JCLI-D-12-00629.1

Jaffres, J. B. D., 2013: Mixed Layer Depth Seasonality within the Coral Sea Based on Argo Data. PLoS ONE, 8, http://dx.doi.org/10.1371/journal.pone.0060985

Jin, S., T. van Dam, and S. Wdowinski, 2013: Observing and understanding the Earth system
variations from space geodesy. Journal of Geodynamics, 72, 1-10, http://dx.doi.org/10.1016/j.jog.2013.08.001

Kashino, Y., 2013: Observational discovery of an eastward undercurrent below the North Equatorial Current. OHM, 100, 96,

Nan, F., H. Xue, F. Chai, D. Wang, F. Yu, M. Shi, P. Guo, and P. Xiu, 2013: Weakening of the Kuroshio Intrusion into the South China Sea over the Past Two Decades. *Journal of Climate, 26*, 8097-8110, http://dx.doi.org/10.1175/JCLI-D-12-00315.1

Oceanography, 19, 59-66,

Shiozaki, T. and Y.-I. L. Chen, 2013: Different mechanisms controlling interannual

Zhang, Z., Y. Zhang, W. Wang, and R. X. Huang, 2013: Universal structure of mesoscale eddies in the ocean. *Geophysical Research Letters, 40*, 3677-3681,

2012 (260)

Bingham, F. M., G. R. Foltz, and M. J. McPhaden, 2012: Characteristics of the seasonal cycle

Kobayashi, T., K. Mizuno, and T. Suga, 2012: Long-term variations of surface and

Nam, S., D.-j. Kim, and W. Moon, 2012: Observed impact of mesoscale circulation on

Piecuch, C. G. and R. M. Ponte, 2012: Importance of Circulation Changes to Atlantic Heat

Plaza, M. A. S., J. L. Pelegrí, F. Machín, and V. B. Barrios, 2012: Inter-decadal changes in stratification and double diffusion in a transatlantic section along 7.5 degrees N. *Scientia Marina*, **76**, 189-207, http://dx.doi.org/10.3989/scimar.03616.19G

Sallee, J. B., R. J. Matear, S. R. Rintoul, and A. Lenton, 2012: Localized subduction of
anthropogenic carbon dioxide in the Southern Hemisphere oceans. *Nature Geoscience, 5*, 579-584, http://dx.doi.org/10.1038/ngeo1523

Vinogradova, N. T. and R. M. Ponte, 2012: Assessing Temporal Aliasing in Satellite-Based

2011 (229)

Chen, D. K., Y. H. Pei, and X. M. Zhang, 2011: Luzon Strait Argo experiments. *A Collection of
Argo research papers, Ocean Press, 39-56,

Chen, S., D. Wang, and Z. X. Zhang, 2011: Comparison of PFL Data from WOD09 and Argo Data. Ocean Technology, 4, 21-32,

Halkides, D. and T. Lee, 2011: Mechanisms controlling seasonal mixed layer temperature and salinity in the Southwestern Tropical Indian Ocean. *Dynamics of Atmospheres*

Kimizuka, M., F. Kobashi, and N. Iwasaka, 2011: Water characteristics and temporal variations of the warm core ring of Sanriku of Japan observed by Argo floats. *Oceanography in Japan, 20*, 149-165,

Li, W., G. J. Han, and Q. Li, 2011: Impact of Argo data on the regional ocean reanalysis for China coastal waters and adjacent seas. *A Collection of Argo research papers*, Ocean Press, 96-105,

Roemmich, D. and J. Gilson, 2011: The global ocean imprint of ENSO. *Geophysical Research

Wang, X. D., G. J. Han, P. C. Chu, and W. Li, 2011: Formation and variability of barrier layer during typhoon passage. A Collection of Argo research papers, Ocean Press, 140-151,

Yu, T., G. J. Han, and W. Li, 2011: The thermohaline structure of Southern Ocean eddies: a case study using Argo floats. *A Collection of Argo research papers, Ocean Press, 166-175*

Chen, G., Y. Hou, Q. Zhang, and X. Chu, 2010: The eddy pair off eastern Vietnam: Interannual

Corre, L., L. Terray, M. Balmaseda, A. Ribes, and A. Weaver, 2010: Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature? *Climate Dynamics*, **38**, 877-896, http://dx.doi.org/10.1007/s00382-010-0950-8

de Boisseson, E., V. Thierry, H. Mercier, and G. Caniaux, 2010: Mixed layer heat budget in the

Durack, P. J. and S. E. Wijffels, 2010: Fifty-Year Trends in Global Ocean Salinities and Their
Relationship to Broad-Scale Warming. *Journal of Climate*, **23**, 4342-4362, http://dx.doi.org/10.1175/2010JCLI3377.1

George, M. S., L. Bertino, O. M. Johannessen, and A. Samuelsen, 2010: Validation of a hybrid

Hosoda, S., 2010: Argo program: A new observing system for ocean research and real time monitoring. *Blue Earth*, 22, 12-13,

Hosoda, S., 2010: Surface layer salinity change in the global ocean - hydrological cycle change detected by Argo. *Kaiyo Monthly*, 42, 621-627,

Hosoda, S. and M. Hirano, 2010: Argo float maintenance and checking at JAMSTEC. *Blue Earth, Special Issue 2010*, 22-23,

Ishii, M., 2010: Argo and historical ocean heat content changes. *Kaiyo Monthly*, 42, 614-620,

Kobayashi, T., 2010: Development of a profiling float for deep ocean observation. *Kaiyo

Llovel, W., S. Guinehut, and A. Cazenave, 2010: Regional and interannual variability in sea level over 2002-2009 based on satellite altimetry, Argo float data and GRACE ocean mass. Ocean Dynamics, 60, 1193-1204, http://dx.doi.org/10.1007/s10236-010-0324-0

Menna, M. and P. M. Poulain, 2010: Mediterranean intermediate circulation estimated from

Oceanic Technology, 27, 2065-2082, http://dx.doi.org/10.1175/2010JTECHO715.1
dimethylsulfoniopropionate (DMSP) dynamics along a natural iron gradient in the
northeast subarctic Pacific. *Limnology and Oceanography, 55*, 1614-1626,
http://dx.doi.org/10.4319/lo.2010.55.4.1614

Derber, M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. Van Den Dool, A. Kumar, W.
Xie, M. Chen, S. Zhou, W. Higgins, C.-Z. Zou, Q. Liu, Y. Chen, Y. Han, L. Cucurull, R. W.
Reynolds, G. Rutledge, and M. Goldberg, 2010: The NCEP Climate Forecast System
Reanalysis. *Bulletin of the American Meteorological Society, 91*, 1015-1057,
http://dx.doi.org/10.1175/2010BAMS3001.1

Ventilation. *Journal of Physical Oceanography, 40*, 509-529,
http://dx.doi.org/10.1175/2009jpo4291.1

Southern Ocean mixed-layer depth to the Southern Annular Mode. *Nature
Geoscience, 3*, 273-279, http://dx.doi.org/10.1038/ngeo812

Coupling on Tropical Cyclone Intensity Change and Ocean Prediction in the
Australian Region. *Monthly Weather Review, 138*, 2074-2091,
http://dx.doi.org/10.1175/2010MWR3101.1

Temperature Anomalies: A Heat Budget Analysis. *Journal of Climate, 23*, 5375-5403,
http://dx.doi.org/10.1175/2010JCLI3072.1

Sarmiento, J. L., R. D. Slater, J. Dunne, A. Gnanadesikan, and M. R. Hiscock, 2010: Efficiency
of small scale carbon mitigation by patch iron fertilization. *Biogeosciences, 7*,
3593-3624, http://dx.doi.org/10.5194/bg-7-3593-2010

Sasaki, Y. N., N. Schneider, N. Maximenko, and K. Lebedev, 2010: Observational evidence for
propagation of decadal spiciness anomalies in the North Pacific. *Geophysical

oceanic surface and subsurface layers in the warm pool associated with the
atmospheric northward-propagating intraseasonal variability. *Deep Sea Research
Part II: Topical Studies in Oceanography, 57*, 1201-1211,
http://dx.doi.org/10.1016/j.dsr2.2009.12.009

Schiller, A., S. E. Wijffels, J. Sprintall, R. Molcard, and P. R. Oke, 2010: Pathways of
intraseasonal variability in the Indonesian Throughflow region. *Dynamics of
Atmospheres and Oceans, 50*, 174-200,
http://dx.doi.org/10.1016/j.dynatmoce.2010.02.003

Sekiguchi, H. and N. Inoue, 2010: Larval recruitment and fisheries of the spiny lobster
Panulirus japonicas coupling with the Kuroshio subgyre circulation in the western
North Pacific: a review. *Journal of the marine biology association of India, 52*,

195-207,

Suga, T., 2010: Influence of subtropical mode waters on primary production. *Aquabiology*, **32**, 218-225,

Yang, Y. J., Y. F. Fu, and L. Sun, 2010: Responses of the upper ocean to Typhoon Tingting observed from multiplatform satellites and Argo float (in Chinese). *Journal of university of science and technology of China*, 40, 1-7,

2009 (121)

Chang, Y.-S., A. J. Rosati, S. Zhang, and M. J. Harrison, 2009: Objective analysis of monthly temperature and salinity for the world ocean in the 21st century: Comparison with

Bork, K., J. Karstensen, M. Visbeck, and A. Zimmermann, 2008: The legal regulation of floats and gliders - In quest of a new regime? *Ocean Development and International Law,

http://dx.doi.org/10.1175/2007jcli2081.1

Li, W., Y. F. Xie, Z. J. He, G. J. Han, K. X. Liu, J. R. Ma, and D. Li, 2008: Application of the Multigrid Data Assimilation Scheme to the China Seas’ Temperature Forecast. *Journal of Atmospheric and Oceanic Technology*, **25**, 2106-2116, http://dx.doi.org/10.1175/2008jtecho510.1

Uchida, H., T. Kawano, and M. Fukasava, 2008: In situ calibration of moored CTDs used for monitoring abyssal water. *Journal of Atmospheric and Oceanic Technology, 25,*

Huang, Y. P., L. J. Kao, and F. E. Sandnes, 2007: Predicting ocean salinity and temperature variations using data mining and fuzzy inference. *International Journal of Fuzzy Systems, 9*, 143-151,

Oke, P. R. and A. Schiller, 2007: Impact of Argo, SST, and altimeter data on an

2006 (82)

Machin, F., U. Send, and W. Zenk, 2006: Intercomparing drifts from RAFOS and profiling
floats in the Deep Western Boundary Current along the Mid-Atlantic Ridge. *Scientia Marina, 70*, 1-8, http://dx.doi.org/10.3989/scimar.2006.70n11

Teng, J., Z.-H. Liu, and M. X. Sun, 2006: Development of Online Argo Data Service Platform Based on GIS. *The Proceedings of IGARSS2006*, Denver, USA,

Zhou, H., P. F. Guo, and J. P. Xu, 2006: The characteristics of the Kuroshio and eddies east of Taiwan Island. Collection of Argo Application papers. China Ocean Press, 47-61,

Kobayashi, T. and S. Minato, 2005: What observation scheme should we use for profiling floats to achieve the argo goal for salinity measurement accuracy? - Suggestions from software calibration. *Journal of Atmospheric and Oceanic Technology*, 22, 1588-1601, http://dx.doi.org/10.1175/JTECH1798.1

Kortzinger, A., J. Schimanski, and U. Send, 2005: High Quality Oxygen Measurements from

Vidard, A., D. L. T. Anderson, and M. Balmaseda, 2005: Impact of ocean observation systems on ocean analysis and seasonal forecasts. ECMWF, Technical Memorandum, 460, 32,

Yimin, L., W. Li, and P. Zhang, 2005: NCC 4-Dimensional Ocean Data Assimilation System and the Studies on its Results in the Middle Pacific. *Acta Oceanologica Sinica, 27*, 27-35,

Youn, Y. H., H. Lee, Y. S. Chang, and P. Thadathil, 2005: Validation of Salinity Data from Argo floats: Comparison between the older Argo floats and that of later deployments. *Journal of Korean Earth Science Society, 26*, 129-136,

2004 (26)

2003 (21)

2002 (20)

Fischer, J. and F. A. Schott, 2002: Labrador Sea water tracked by profiling floats - From the
boundary current into the open North Atlantic. *Journal of Physical Oceanography*, 32, 573-584,
http://dx.doi.org/10.1175/1520-0485(2002)032%3C0573:LSWTBP%3E2.0.CO;2
Riser, S. C., 2002: Studying the global ocean circulation with profiling floats. *Argos Forum*, 59, 4-7,

Pingree, R. and B. Sinha, 2001: Westward moving waves or eddies (Storms) on the Subtropical/Azores Front near 32.5N? Interpretation of the Eulerian currents and temperature records at moorings 155 (35.5W) and 156 (34.4W). *Journal of Marine Systems*, 29, 239-276, http://dx.doi.org/10.1016/S0924-7963(01)00019-7

2000 (8)

Lavender, K. L., R. E. Davis, and W. B. Owens, 2000: Mid-depth recirculation observed in the interior Labrador and Irminger seas by direct velocity measurements. *Nature*, **407**, 66-69, http://dx.doi.org/10.1038/35024048

Molinari, R. L. and J. F. Festa, 2000: Effect of subjective choices on the objective analysis of sea surface temperature data in the tropical Atlantic and Pacific oceans. *Oceanologica Acta*, **23**, 3-14, http://dx.doi.org/10.1016/S0399-1784(00)00108-0

1999 (4)

1998 (4)

1997 (1)

1996 (2)

1995 (1)

1992 (1)

1991 (2)

Davis, R. E., 1991: LAGRANGIAN OCEAN STUDIES. *Annual Review of Fluid Mechanics,* 23, 43-64,