

Jiang, M., J. Wang, G. Li, B. Liu, and X. Chen (2024), Is seasonal closure an effective way to conserve oceanic squids—Taking Chinese autonomic seasonal closure on the high seas as an example, *Fisheries Research*, 271, 106914, doi: https://doi.org/10.1016/j.fishres.2023.106914

Pang, S., X. Wang, and J. Vialard (2024), How Well Do CMIP6 Models Simulate Salinity Barrier Layers in the North Indian Ocean?, *J. Clim.*, 37(1), 289-308, doi: https://doi.org/10.1175/JCLI-D-23-0366.1

and A. Mashayek (2024), Spatiotemporal Characteristics of the Near-Surface Turbulent Cascade at the Submesoscale in the Drake Passage, *J. Phys. Oceanogr.*, 54(1), 187-215, doi: https://doi.org/10.1175/JPO-D-23-0108.1

2023 (526)

Bendtsen, J., C. R. Vives, and K. Richardson (2023), Primary production in the North Atlantic estimated from in situ water column data observed by Argo floats and remote sensing, *Frontiers in Marine Science*, 10, doi:

Chen, H.-H., Y. Wang, P. Xiu, Y. Yu, W. Ma, and F. Chai (2023), Combined oceanic and atmospheric forcing of the 2013/14 marine heatwave in the northeast Pacific, npj Climate and Atmospheric Science, 6(1), 3, doi: https://doi.org/10.1038/s41612-023-00327-0.

Chen, Z., X. Wang, L. Liu, and X. Wang (2023), Estimating Three-Dimensional Structures of Eddy in the South Indian Ocean From the Satellite Observations Based on the isQG
Method, Earth and Space Science, 10(10), e2023EA002991, doi: https://doi.org/10.1029/2023EA002991.

Chidichimo, M. P., et al. (2023), Energetic overturning flows, dynamic interocean exchanges, and ocean warming observed in the South Atlantic, Communications Earth & Environment, 4(1), 10, doi: https://doi.org/10.1038/s43247-022-00644-x.

Cox, I., R. J. W. Brewin, G. Dall’Olmo, K. Sheen, S. Sathyendranath, R. Rasse, and O. Ulloa (2023), Distinct habitat and biogeochemical properties of low-oxygen-adapted tropical oceanic phytoplankton, Limnol. Oceanogr., 68(9), 2022-2039, doi:

Fragkopoulou, E., A. Sen Gupta, M. J. Costello, T. Wernberg, M. B. Araújo, E. A. Serrão, O. De Clerck, and J. Assis (2023), Marine biodiversity exposed to prolonged and intense
subsurface heatwaves, *Nature Climate Change*, 13(10), 1114-1121, doi: https://doi.org/10.1038/s41558-023-01790-6.

Hauck, J., C. Nissen, P. Landschützer, C. Rödenbeck, S. Bushinsky, and A. Olsen (2023), Sparse observations induce large biases in estimates of the global ocean CO2 sink: an ocean model subsampling experiment, Philosophical Transactions of the Royal

Hirano, D., et al. (2023), On-shelf circulation of warm water toward the Totten Ice Shelf in East Antarctica, *Nature Communications*, 14(1), 4955, doi: https://doi.org/10.1038/s41467-023-39764-z.

Huang, Y., Andrea J. Fassbender, and Seth M. Bushinsky (2023), Biogenic carbon pool production maintains the Southern Ocean carbon sink, *Proceedings of the National Academy of Sciences*, 120(18), e2217909120, doi: https://doi.org/10.1073/pnas.2217909120.

Jackson, L. C., and T. Petit (2023), North Atlantic overturning and water mass transformation in CMIP6 models, Climate Dynamics, 60(9), 2871-2891, doi: https://doi.org/10.1007/s00382-022-06448-1.

Jing, W., Y. Luo, Y. Wang, L. Xu, and D. Wu (2023), Changes of upper-ocean temperature in the Southeast Indian Subantarctic Mode Water formation region since the 1950s, Climate Dynamics, 61, 2503-2519, doi: https://doi.org/10.1007/s00382-023-06692-z.

Kido, S., S. Katsura, M. Nonaka, and Y. Tanimoto (2023), Mechanism and impact of zonally

Lombard, F., et al. (2023), Open science resources from the Tara Pacific expedition across coral reef and surface ocean ecosystems, *Scientific Data*, 10(1), 324, doi: https://doi.org/10.1038/s41597-022-01757-w.

Meyssignac, B., et al. (2023), How accurate is accurate enough for measuring sea-level rise and variability, Nature Climate Change, 13(8), 796-803, doi: https://doi.org/10.1038/s41558-023-00328-2.

Miao, X., L. Liu, H. Miao, Z. Yang, J. Wang, and Q. Zhang (2023), Timeliness of Correcting Baseline Error in Wide-Swath Altimeter Based on Reference Topography Data,
Minière, A., K. von Schuckmann, J.-B. Sallée, and L. Vogt (2023), Robust acceleration of Earth system heating observed over the past six decades, Scientific Reports, 13(1), 22975, doi: https://doi.org/10.1038/s41598-023-49353-1.
Moreau, S., et al. (2023), Wind-driven upwelling of iron sustains dense blooms and food webs in the eastern Weddell Gyre, Nature Communications, 14(1), 1303, doi:

Pacini, A., and R. S. Pickart (2023), Wind-Forced Upwelling Along the West Greenland

Picado, A., N. Vaz, I. Alvarez, and J. M. Dias (2023), Modelling coastal upwelling off NW

Qin, Y., Y. Sun, H. Liu, R. Yin, M. Dong, and L. Zhang (2023), Joint time synchronization and

Shee, A., S. Sil, and A. Gangopadhyay (2023), Recent changes in the upper oceanic water masses over the Indian Ocean using Argo data, Scientific Reports, 13(1), 20252, doi: https://doi.org/10.1038/s41598-023-47658-9.

Silver, A., A. Gangopadhyay, G. Gawarkiewicz, P. Fratantoni, and J. Clark (2023), Increased gulf stream warm core ring formations contributes to an observed increase in salinity maximum intrusions on the Northeast Shelf, Scientific Reports, 13(1), 7538,

Song, S.-Y., S.-W. Yeh, H. Kim, and N. J. Holbrook (2023), Arctic warming contributes to increase in Northeast Pacific marine heatwave days over the past decades, *Communications Earth & Environment*, 4(1), 25, doi: https://doi.org/10.1038/s43247-023-00683-y.

Su, F., et al. (2023), Widespread global disparities between modelled and observed mid-depth ocean currents, *Nature Communications*, 14(1), 2089, doi: https://doi.org/10.1038/s41467-023-37841-x.

Thandlam, V., H. Rahaman, A. Rutgersson, E. Sahlee, M. Ravichandran, and S. S. V. S. Ramakrishna (2023), Quantifying the role of antecedent Southwestern Indian Ocean capacitance on the summer monsoon rainfall variability over homogeneous regions of India, *Scientific Reports*, 13(1), 5553, doi: https://doi.org/10.1038/s41598-023-32840-w.

Thomas, L., S. Abhilash, and V. Pattathil (2023), The unsung role of SST in simulating

Thoppil, P. G. (2023), Enhanced phytoplankton bloom triggered by atmospheric high-pressure systems over the Northern Arabian Sea, *Scientific Reports*, 13(1), 769, doi: https://doi.org/10.1038/s41598-023-27785-z.

Wang, Q., and X. Li (2023), Interannual variability and mechanism of ocean stratification over the Kuroshio Extension region in the warm season, *Climate Dynamics*, 61, 3481-3497, doi: https://doi.org/10.1007/s00382-023-0763-3.

Wang, X., Y. Du, Y. Zhang, T. Wang, M. Wang, and Z. Jing (2023), Subsurface Anticyclonic Eddy Transited from Kuroshio Shedding Eddy in the Northern South China Sea, *J.

Wong, A. P. S., J. Gilson, and C. Cabanes (2023), Argo salinity: bias and uncertainty

Xie, C., R. Ding, J. Xuan, and D. Huang (2023), Interannual variations in salt flux at 80ºE section of the equatorial Indian Ocean, *Sci. China Earth Sci.*, 66(9), 2142-2161, doi:

Yao, R., W. Shao, M. Hao, J. Zuo, and S. Hu (2023), The Respondence of Wave on Sea Surface

Zhang, W., J. Zhang, Q. Liu, J. Sun, R. Li, and C. Guan (2023), Effects of Surface Wave-Induced Mixing and Wave-Affected Exchange Coefficients on Tropical Cyclones, Remote Sensing, 15(6), 1594, doi: https://doi.org/10.3390/rs15061594.

Zhang, Y., and Z. Chen (2023), Cool Skin Effect as Seen from a New Generation Geostationary Satellite Himawari-8, Remote Sensing, 15(18), 4408, doi: https://doi.org/10.3390/rs15184408.

Addey, C. I. (2022), Using Biogeochemical Argo floats to understand ocean carbon and oxygen dynamics, Nature Reviews Earth & Environment, 3(11), 739-739, doi: https://doi.org/10.1038/s43017-022-00341-5.

Ahmed, R., S. Prakash, M. Mohapatra, R. K. Giri, and S. Dwivedi (2022), Understanding the rapid intensification of extremely severe cyclonic storm ‘Tauktae’ using remote-sensing observations, Meteorology and Atmospheric Physics, 134(6), 97, doi: https://doi.org/10.1007/s00703-022-00935-0.

Barbieux, M., et al. (2022), Biological production in two contrasted regions of the

Carlson, M. C. G., et al. (2022), Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean, Nature Microbiology, 7(4), 570-580, doi: https://doi.org/10.1038/s41564-022-01088-x.

Demyshhev, S. G., and O. A. Dymova (2022), Analysis of the annual mean energy cycle of the
Black Sea circulation for the climatic, basin-scale and eddy regimes, Ocean Dyn., 72(3), 259-278, doi: https://doi.org/10.1007/s10236-022-01504-0.

Dong, C., et al. (2022), The near-global ocean mesoscale eddy atmospheric-oceanic-biological interaction observational dataset, Scientific Data,

Falls, M., R. Bernardello, M. Castrillo, M. Acosta, J. Llort, and M. Galí (2022), Use of genetic
Fedele, G., E. Mauri, G. Notarstefano, and P. M. Poulain (2022), Characterization of the
Atlantic Water and Levantine Intermediate Water in the Mediterranean Sea using 20
Feng, Y., B. J. Bethel, C. Dong, H. Zhao, Y. Yao, and Y. Yu (2022), Marine heatwave events
near Weizhou Island, Beibu Gulf in 2020 and their possible relations to coral
biogeochemical modelling, Nature Reviews Methods Primers, 2(1), 76, doi: https://doi.org/10.1038/s43586-022-00154-2.
Fernández Castro, B., M. Mazloff, R. G. Williams, and A. C. Naveira Garabato (2022),
Subtropical Contribution to Sub-Antarctic Mode Waters, Geophys. Res. Lett., 49(11),
Fernandez, D., M. Bowen, and P. Sutton (2022), South Pacific Ocean Dynamics Redistribute
Ocean Heat Content and Modulate Heat Exchange With the Atmosphere, Geophys.
Ferreira, A., J. Dias, V. Brotas, and A. C. Brito (2022), A perfect storm: An anomalous offshore
phytoplankton bloom event in the NE Atlantic (March 2009), Science of The Total
Feucher, C., E. Portela, N. Kolodziejczyk, and V. Thierry (2022), Subpolar gyre decadal
variability explains the recent oxygenation in the Irminger Sea, Communications
Earth & Environment, 3(1), 279, doi: https://doi.org/10.1038/s43247-022-00570-y.
Finocchio, P. M., J. D. Doyle, and D. P. Stern (2022), Accelerated Sea Ice Loss from Late
Summer Cyclones in the New Arctic, J. Clim., 35(23), 4151-4169, doi:
https://doi.org/10.1175/JCLI-D-22-0315.1.
Finucane, G., and S. Hautala (2022), Transport of Antarctic Bottom Water Entering the Brazil
Basin in a Planetary Geostrophic Inverse Model, Geophys. Res. Lett., 49(22),
e2022GL100121, doi: https://doi.org/10.1029/2022GL100121.
Fourrier, M., L. Coppola, F. D’Ortenzio, C. Migon, and J.-P. Gattuso (2022), Impact of
Intermittent Convection in the Northwestern Mediterranean Sea on Oxygen
Fox-Kemper, B., L. Johnson, and F. Qiao (2022), Chapter 4 - Ocean near-surface layers, in
Ocean Mixing, edited by M. Meredith and A. Naveira Garabato, pp. 65-94, Elsevier,
Frajka-Williams, E., J. A. Brearley, J. D. Nash, and C. B. Whalen (2022), Chapter 14 - New
technological frontiers in ocean mixing, in Ocean Mixing, edited by M. Meredith and
A. Naveira Garabato, pp. 345-361, Elsevier, doi:

Fujiki, T., S. Hosoda, and N. Harada (2022), Phytoplankton blooms in summer and autumn in the northwestern subarctic Pacific detected by the mooring and float systems, *J. Oceanogr.*, 78(2), 63-72, doi: https://doi.org/10.1007/s10872-021-00628-z.

Girishkumar, M. S. (2022), Surface chlorophyll blooms in the Southern Bay of Bengal during the extreme positive Indian Ocean dipole, *Climate Dynamics*, 59(5), 1505-1519, doi: https://doi.org/10.1007/s00382-021-06050-x.

Heuzé, C., S. G. Purkey, and G. C. Johnson (2022), It is high time we monitor the deep ocean, *Environmental Research Letters*, 17(12), 121002, doi: https://dx.doi.org/10.1088/1748-9326/aca622.

Horvat, C., K. Bisson, S. Seabrook, A. Cristi, and L. C. Matthes (2022), Evidence of

Ji, X., H. Yin, L. Jing, Y. Liang, and J. Wang (2022), Modeling and performance analysis of oblique underwater optical communication links considering turbulence effects based on seawater depth layering, Opt. Express, 30(11), 18874-18888, doi: https://doi.org/10.1364/OE.453918.

Kang, K., and I.-J. Moon (2022), Sea Surface Height Changes due to the Tropical Cyclone-Induced Water Mixing in the Yellow Sea, Korea, Frontiers in Earth Science,

Kolyuchkina, G. A., et al. (2022), Benthic community structure near the margin of the oxic

Mackay, N., A. J. Watson, P. Suntharalingam, Z. Chen, and P. Landschützer (2022), Improved
winter data coverage of the Southern Ocean CO2 sink from extrapolation of summertime observations, *Communications Earth & Environment*, 3(1), 265, doi: https://doi.org/10.1038/s43247-022-00592-6.

McAdam, R., S. Masina, M. Balmaseda, S. Gualdi, R. Senan, and M. Mayer (2022), Seasonal forecast skill of upper-ocean heat content in coupled high-resolution systems,

Moteki, Q. (2022), Validation of satellite-based sea surface temperature products against in situ observations off the western coast of Sumatra, *Scientific Reports*, 12(1), 92, doi: https://doi.org/10.1038/s41598-021-04156-0.

Olmedo, E., et al. (2022), Increasing stratification as observed by satellite sea surface salinity measurements, *Scientific Reports, 12*(1), 6279, doi: https://doi.org/10.1038/s41598-022-10265-1.

radar, Meteorology and Atmospheric Physics, 134(5), 86, doi: https://doi.org/10.1007/s00703-022-00921-6.

Pandey, R. S., and Y.-A. Liou (2022), Sea surface temperature (SST) and SST anomaly (SSTA) datasets over the last four decades (1977–2016) during typhoon season (May to November) in the entire Global Ocean, North Pacific Ocean, Philippine Sea, South China sea, and Eastern China Sea, Data in Brief, 45, 108646, doi: https://doi.org/10.1016/j.dib.2022.108646.

Ren, Q., Y.-O. Kwon, J. Yang, R. X. Huang, Y. Li, and F. Wang (2022), Increasing
Inhomogeneity of the Global Oceans, Geophys. Res. Lett., 49(12), e2021GL097598,
doi: https://doi.org/10.1029/2021GL097598.

Ren, Q., F. Yu, F. Nan, Y. Li, J. Wang, Y. Liu, and Z. Chen (2022), Effects of mesoscale eddies
on intraseasonal variability of intermediate water east of Taiwan, Scientific Reports,
12(1), 9182, doi: https://doi.org/10.1038/s41598-022-13274-2.

Rhomad, H., K. Khalil, R. Neves, J. Sobrinho, J. M. Dias, and K. Elkalay (2022),
Three-dimensional hydrodynamic modelling of the Moroccan Atlantic coast: A case
study of Agadir bay, Journal of Sea Research, 188, 102272, doi:

Rigual-Hernández, A. S., et al. (2022), Influence of environmental variability and Emiliania
huxleyi ecotypes on alkenone-derived temperature reconstructions in the
subantarctic Southern Ocean, Science of The Total Environment, 812, 152474, doi:

Networks After 30 Years of Continuous Geophysical Observations, Reviews of

Roberts, S. M., P. N. Halpin, and J. S. Clark (2022), Jointly modeling marine species to inform
the effects of environmental change on an ecological community in the Northwest
Atlantic, Scientific Reports, 12(1), 132, doi:
https://doi.org/10.1038/s41598-021-04110-0.

King, S. Wijffels, P. J. H. Sutton, and N. Zilberman (2022), Chapter 4 - The Argo

Rossby, T., J. Palter, and K. Donohue (2022), What Can Hydrography Between the New
England Slope, Bermuda and Africa Tell Us About the Strength of the AMOC Over
the Last 90 years?, Geophys. Res. Lett., 49(23), e2022GL099173, doi:
https://doi.org/10.1029/2022GL099173.

Rossi, G. B., A. Cannata, A. Iengo, M. Migliaccio, G. Nardone, V. Piscopo, and E. Zambianchi
(2022), Measurement of Sea Waves, Sensors, 22(1), 78, doi:
https://doi.org/10.3390/s22010078.

Roussenov, V. M., R. G. Williams, M. S. Lozier, N. P. Holliday, and D. M. Smith (2022),
Historical Reconstruction of Subpolar North Atlantic Overturning and Its
Relationship to Density, Journal of Geophysical Research: Oceans, 127(6),

Rudels, B. (2022), Chapter 5 - The circulation and transformations of Atlantic water in the
Arctic Mediterranean Sea, in The Physical Oceanography of the Arctic Mediterranean
Sea, edited by B. Rudels, pp. 211-276, Elsevier, doi:

Rühs, S., C. Schmidt, R. Schubert, T. G. Schulzki, F. U. Schwarzkopf, D. Le Bars, and A.
Biastoch (2022), Robust estimates for the decadal evolution of Agulhas leakage from
the 1960s to the 2010s, Communications Earth & Environment, 3(1), 318, doi:

Shulman, I., J. H. Cohen, M. A. Moline, S. Anderson, E. J. Metzger, and C. Rowley (2022), Modeling studies of the bioluminescence potential dynamics in a high Arctic fjord

Sridevi, B., and V. V. S. Sarma (2022), Enhanced Atmospheric Pollutants Strengthened Winter Convective Mixing and Phytoplankton Blooms in the Northern Arabian Sea,

Sun, Q., Y. Zhang, Y. Du, and X. Jiang (2022), Asymmetric Response of Sea Surface Salinity to Extreme Positive and Negative Indian Ocean Dipole in the Southern Tropical Indian Ocean, *Journal of Geophysical Research: Oceans*, 127(11), e2022JC018986, doi:

Thorpe, S. E., and E. J. Murphy (2022), Spatial and temporal variability and connectivity of the marine environment of the South Sandwich Islands, Southern Ocean, *Deep Sea

Ushijima, Y., and Y. Yoshikawa (2022), Nonlinearly interacting entrainment due to shear and convection in the surface ocean, *Scientific Reports, 12*(1), 9899, doi: https://doi.org/10.1038/s41598-022-14098-w.

Våge, K., S. Semper, H. Valdimarsson, S. Jónsson, R. S. Pickart, and G. W. K. Moore (2022), Water mass transformation in the Iceland Sea: Contrasting two winters separated by

Wang, P., K. Mao, X. Chen, and K. Liu (2022), The Three-Dimensional Structure of the Mesoscale Eddy in the Kuroshio Extension Region Obtained from Three Datasets,
Journal of Marine Science and Engineering, 10(11), doi: https://doi.org/10.3390/jmse10111754.

Wang, Q., Z. Qiu, S. Yang, H. Li, and X. Li (2022), Design and experimental research of a novel deep-sea self-sustaining profiling float for observing the northeast off the Luzon Island, Scientific Reports, 12(1), 18885, doi: https://doi.org/10.1038/s41598-022-23208-7.

Wang, Z., X. Shi, and H. Huang (2022), Observation of physical oceanography at the Y3

oxygen concentrations as a quality control of ocean float data, *Communications Earth & Environment*, 3(1), 92, doi: https://doi.org/10.1038/s43247-022-00421-w.

Xu, G., P. Chang, S. Ramachandran, G. Danabasoglu, S. Yeager, J. Small, Q. Zhang, Z. Jing, and L. Wu (2022), Impacts of Model Horizontal Resolution on Mean Sea Surface

Zhang, L., M. Jiang, and F. Jing (2022), Sea temperature variation associated with the 2021 Haiti Mw 7.2 earthquake and possible mechanism, *Geomatics, Natural Hazards and Risk, 13*(1), 2840-2863, doi: https://doi.org/10.1080/19475705.2022.2137439.

Zhang, W., and D. Gu (2022), Geostationary satellite reveals increasing marine isoprene emissions in the center of the equatorial Pacific Ocean, *npj Climate and Atmospheric Science, 5*(1), 83, doi: https://doi.org/10.1038/s41612-022-00311-0.

Zhao, B., et al. (2022), The Effects of Ocean Surface Waves on Tropical Cyclone Intensity:

2021 (549)

Behrens, E., A. M. Hogg, M. H. England, and H. Bostock (2021), Seasonal and Interannual

https://doi.org/10.1109/TGRS.2020.3030488.

Chamberlain, M. A., P. R. Oke, R. A. S. Fiedler, H. M. Beggs, G. B. Brassington, and P. Divakaran (2021), Next generation of Bluelink ocean reanalysis with multiscale data

Ciappa, A. C. (2021), Reverse trajectory study of oil spill risk in Cyclades Islands of the Aegean Sea, *Regional Studies in Marine Science*, 41, 101580, doi:

Di Luca, A., D. Argüeso, S. Sherwood, and J. P. Evans (2021), Evaluating Precipitation Errors Using the Environmentally Conditioned Intensity-Frequency Decomposition Method,
Diaz, B. P., et al. (2021), Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic, Nature Communications, 12(1), 6634, doi: https://doi.org/10.1038/s41467-021-26836-1.

Du, M., F. Zheng, J. Zhu, R. Lin, and K. Yi (2021), Comparative Analysis of Two Approaches for Correcting the Systematic Ocean Temperature Bias of CAS-ESM-C, Journal of...

Ford, D. (2021), Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design, *Biogeosciences*, 18(2),

Gao, W., Z. Wang, X. Li, and H. Huang (2021), The increased storage of suspended particulate matter in the upper water of the tropical Western Pacific during the

Gould, W. J., and S. A. Cunningham (2021), Global-scale patterns of observed sea surface salinity intensified since the 1870s, *Communications Earth & Environment*, 2(1), 76, doi: https://doi.org/10.1038/s43247-021-00161-3.

Ham, Y.-G., Y.-S. Joo, and J.-Y. Park (2021), Mechanism of skillful seasonal surface chlorophyll prediction over the southern Pacific using a global earth system model,

Iskandar, I., M. Nagura, and M. J. McPhaden (2021), Role of the eastern boundary-generated waves on the termination of 1997 Indian Ocean Dipole event, *Geosci. Lett.*, 8(1), 35,

Ji, H., X. Liu, C. Zhu, J. Yuan, B. Ji, and J. Guo (2021), On performance of CryoSat-2 altimeter data in deriving marine gravity over the Bay of Bengal, Marine Geophysical Research,

Kassis, D., and G. Varlas (2021), Hydrographic effects of an intense “medicane” over the

Kim, S.-Y., Y.-G. Park, Y. H. Kim, S. Seo, H. Jin, G. Pak, and H. J. Lee (2021), Origin, Variability,
Kobayashi, T., K. Sato, and B. A. King (2021), Observed features of salinity bias with negative pressure dependency for measurements by SBE 41CP and SBE 61 CTD sensors on deep profiling floats, Prog. Oceanogr., 198, 102686, doi: https://doi.org/10.17882/42182#68322.

Lian, Z., Z. Wei, Y. Wang, and X. Wang (2021), Geographical variation and controlling

Liu, H., S. Li, and Z. Wei (2021), Interannual variability in the subduction of the South Atlantic subtropical underwater, *Climate Dynamics*, 57(3), 1061-1077, doi: https://doi.org/10.1007/s00382-021-05758-0.

Liu, Y., H. LÜ, H. Zhang, Y. Cui, and X. Xing (2021), Effects of ocean eddies on the tropical storm Roanu intensity in the Bay of Bengal, PLOS ONE, 16(3), e0247521, doi: https://doi.org/10.1371/journal.pone.0247521.

Maneesha, K., V. S. Prasad, and K. Venkateswararao (2021), Ocean impact on the

Meng, L., C. Yan, W. Zhuang, W. Zhang, and X.-H. Yan (2021), Reconstruction of

Prasanth, R., V. Vijith, V. Thushara, J. V. George, and P. N. Vinayachandran (2021), Processes governing the seasonality of vertical chlorophyll-a distribution in the central Arabian Sea: Bio-Argo observations and ecosystem model simulation, *Deep Sea Research*

Qiu, Y., X. Lin, and C. Jing (2021), Recurrence of wintertime SST anomalies in the Bay of Bengal: characteristics and causes, Climate Dynamics, doi: https://doi.org/10.1007/s00382-021-05693-0.

Oceans, 126(10), e2021JC017509, doi: https://doi.org/10.1029/2021JC017509.
Rousselet, L., P. Cessi, and G. Forget (2021), Coupling of the mid-depth and abyssal components of the global overturning circulation according to a state estimate, Science Advances, 7(21), eabf5478, doi: http://dx.doi.org/10.1126/sciadv.abf5478.
Ryan, S., C. C. Ummenhofer, G. Gawarkiewicz, P. Wagner, M. Scheinert, A. Biastoch, and C. W. Böning (2021), Depth Structure of Ningaloo Niño/Niña Events and Associated

Sil, S., A. Gangopadhyay, G. Gawarkiewicz, and S. Pramanik (2021), Shifting seasonality of cyclones and western boundary current interactions in Bay of Bengal as observed during Amphan and Fani, *Scientific Reports*, 11(1), 22052, doi: https://doi.org/10.1038/s41598-021-01607-6.

Song, H.-J., and J.-Y. Park (2021), Bottom-Up Drivers for Global Fish Catch Assessed with

Thoppil, P. G., et al. (2021), Ensemble forecasting greatly expands the prediction horizon for ocean mesoscale variability, Communications Earth & Environment, 2(1), 89, doi: https://doi.org/10.1038/s43247-021-00151-5.

Wang, J., J. A. Church, X. Zhang, and X. Chen (2021), Reconciling global mean and regional sea level change in projections and observations, Nature Communications, 12(1), 990, doi: https://doi.org/10.1038/s41467-021-21265-6.

Wimart-Rousseau, C., et al. (2021), Seasonal and Interannual Variability of the CO2 System

Yuan, D., P. Chen, Z. Mao, X. Zhang, Z. Zhang, C. Xie, C. Zhong, and Z. Qian (2021), Ocean mixed layer depth estimation using airborne Brillouin scattering lidar: simulation and

Boretti, A., 2020: The pattern of sea-level rise across the North Atlantic from

Daher, H., L. M. Beal, and F. U. Schwarzkopf, 2020: A New Improved Estimation of Agulhas

Iqbal, K., S. Piao, and M. Zhang, 2020: Decadal Spatiotemporal Halocline Analysis by ISAS15 Due to Influx of Major Rivers in Oceans and Discrepancies Illustrated Near the Bay of Bengal. *Water*, 12, https://doi.org/10.3390/w12102886

Jithin, A. K. and P. A. Francis, 2020: Role of internal tide mixing in keeping the deep Andaman Sea warmer than the Bay of Bengal. *Scientific Reports, 10*, 11982, https://doi.org/10.1038/s41598-020-68708-6

Palmas (Spain) - St. John’s (Canada). MERIAN-Berichte, https://doi.org/10.2312/cr_msm83.

Li, X., F. Liu, and M. Fang, 2020: Harmonizing models and observations: Data assimilation in Earth system science. *Science China Earth Sciences*, 63, 1059-1068,

Li, Z. L., J. C. Zuo, Q. Y. Ji, and e. al, 2020: Reconstruction of 3D sea temperature field based on Argo profile, SST and SLA data. *Marine Forecast, 37,* 66-75,

Liu, Y., Y. F. Yan, and Z. Ling, 2020: Preliminary analysis on climatological and seasonal variation of barrier layer thickness in the northern Indian Ocean and its mechanism. *Journal of Tropical Oceanography, 39*, 98-108,

Liu, Y. P., D. L. Tang, and W. Z. Liang, 2020: Chlorophyll a concentration response to the typhoon “wind pump” and the Kuroshio in the northeastern South China Sea. *Haiyang Xuebao, 42*, 16-31,

Martini, K. I., D. J. Murphy, R. W. Schmitt, and N. G. Larson, 2020: Reply to “Comments on ‘Corrections for Pumped SBE 41CP CTDs Determined from Stratified Tank

Petrova, D., J. Ballester, S. J. Koopman, and X. Rodó, 2020: Multiyear Statistical Prediction of

Qi, J., T. Qu, B. Yin, and J. Chi, 2020: Variability of the South Pacific Western Subtropical Mode Water and Its Relationship With ENSO During the Argo Period. Journal of Geophysical Research: Oceans, 125, e2020JC016134,

Robson, J., Y. Aksenov, T. J. Bracegirdle, O. Dimdore-Miles, P. T. Griffiths, D. P. Grosvenor, D.

Salinger, M. J., H. J. Diamond, E. Behrens, D. Fernandez, B. B. Fitzharris, N. Herold, P.

Recommendation System for Marine Science Observation Data Based on Content and Literature Filtering. *Sensors, 20*, https://doi.org/10.3390/s20226414

Storlazzi, C. D., O. M. Cheriton, R. van Hooidonk, Z. Zhao, and R. Brainard, 2020: Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming. *Scientific Reports, 10*, 13435, https://doi.org/10.1038/s41598-020-70372-9

2019 (515)

Callieri, C., et al. (2019), The mesopelagic anoxic Black Sea as an unexpected habitat for Synechococcus challenges our understanding of global “deep red fluorescence”, *The ISME Journal*, 13(7), 1676-1687, doi: https://doi.org/10.1038/s41396-019-0378-z.

Chakraborty, K., N. Kumar, M. S. Girishkumar, G. V. M. Gupta, J. Ghosh, T. V. S. Udaya

Chatterjee, A., B. P. Kumar, S. Prakash, and P. Singh (2019), Annihilation of the Somali upwelling system during summer monsoon, *Scientific Reports*, 9(1), 7598, doi: https://doi.org/10.1038/s41598-019-44099-1.

Cheng, L., J. Abraham, Z. Hausfather, and K. E. Trenberth (2019), How fast are the oceans

infrastructures to quantify the impact of plastic debris in the ocean, *Environmental Research Letters*, 14(6), 065001, doi: http://dx.doi.org/10.1088/1748-9326/ab17ed.

Etourneau, J., et al. (2019), Ocean temperature impact on ice shelf extent in the eastern Antarctic Peninsula, Nature Communications, 10(1), 304, doi:

Han, M., Y. Feng, X. Zhao, C. Sun, F. Hong, and C. Liu (2019), A Convolutional Neural

Li, G., Y. Zhang, J. Xiao, X. Song, J. Abraham, L. Cheng, and J. Zhu (2019), Examining the

Lin, X., Y. Qiu, J. Cha, and X. Guo (2019), Assessment of Aquarius sea surface salinity with

Marchese, C., L. Castro de la Guardia, P. G. Myers, and S. Bélanger (2019), Regional

Miron, P., F. J. Beron-Vera, M. J. Olascoaga, G. Froyland, P. Pérez-Brunius, and J. Sheinbaum

Pramanik, S., S. Sil, S. Mandal, D. Dey, and A. Shee (2019), Role of interannual equatorial forcing on the subsurface temperature dipole in the Bay of Bengal during IOD and ENSO events, *Ocean Dyn.*, 69(11), 1253-1271, doi: https://doi.org/10.1007/s10236-019-01303-0.

Saldías, G. S., M. Sobarzo, and R. Quiñones (2019), Freshwater structure and its seasonal

Srokosz, M., and C. Banks (2019), Salinity from space, *Weather*, 74(1), 3-8, doi:

Szekely, T., J. Gourrion, S. Pouliquen, and G. Reverdin (2019), The CORA 5.2 dataset for global in situ temperature and salinity measurements: data description and

van der Boog, C. G., M. F. de Jong, M. Scheidat, M. F. Leopold, S. C. V. Geelhoed, K. Schulz,

Xu, H., D. Tang, Y. Liu, and Y. Li (2019), Dissolved oxygen responses to tropical cyclones “Wind Pump” on pre-existing cyclonic and anticyclonic eddies in the Bay of Bengal,

Yang, Y., K. Li, J. Du, Y. Liu, L. Liu, H. Wang, and W. Yu (2019), Revealing the Subsurface Yellow Sea Cold Water Mass from Satellite Data Associated with Typhoon Muifa,

Andres, M., M. Muglia, F. Bahr, and J. Bane, 2018: Continuous Flow of Upper Labrador Sea Water around Cape Hatteras. Scientific Reports, 8, 4494, https://doi.org/10.1038/s41598-018-22758-z

Bhagawati, C., S. Pandey, S. Dandapat, and A. Chakraborty, 2018: Dynamical significance of tides over the Bay of Bengal. Dynamics of Atmospheres and Oceans, 82, 89-106, https://doi.org/10.1016/j.dynatmoce.2018.05.002

Cheng, L. and J. Zhu, 2018: 2017 was the warmest year on record for the global ocean. Advances in Atmospheric Sciences, 35, 261-263, https://doi.org/10.1007/s00376-018-8011-z

Chiang, T.-L., Y.-C. Hsin, and C.-R. Wu, 2018: Multidecadal Changes of Upper-Ocean Thermal Conditions in the Tropical Northwest Pacific Ocean versus South China Sea during

Dawson, H. R. S., P. G. Strutton, and P. Gaube, 2018: The Unusual Surface Chlorophyll

Fay, A. R., N. S. Lovenduski, G. A. McKinley, D. R. Munro, C. Sweeney, A. R. Gray, P.

Huang, Z., W. Zhuang, H. Liu, and J. Hu, 2018: Subduction of a low-salinity water mass around the Xisha Islands in the South China Sea. Scientific Reports, 8, 3074, https://doi.org/10.1038/s41598-018-21364-3

Kakatkar, R., C. Gnanaseelan, J. S. Deepa, J. Chowdary, and A. Parekh, 2018: Role of ocean-atmosphere interactions in modulating the 2016 La Niña like pattern over the...

Maher, N., M. H. England, A. S. Gupta, and P. Spence, 2018: Role of Pacific trade winds in driving ocean temperatures during the recent slowdown and projections under a

Analysis of Climate Mode Fingerprints. *Journal of Climate*, 31, 7583-7597, https://doi.org/10.1175/JCLI-D-17-0679.1

Ponte, R. M., K. J. Quinn, and C. G. Piecuch, 2018: Accounting for Gravitational Attraction and Loading Effects from Land Ice on Absolute Sea Level. *Journal of Atmospheric and Oceanic Technology*, 35, 405-410, https://doi.org/10.1175/JTECH-D-17-0092.1

37, 41-49, https://doi.org/10.1007/s13131-018-1206-4

Vazquez-Cuervo, J., S. Fournier, B. Dzwonkowski, and J. Reager, 2018: Intercomparison of

Wang, W., A. Pan, K. Edi, H. Muh, and S. Deny, 2018: North-south difference of water mass

Wang, X., W. Zhang, P. Wang, J. Yang, and H. Wang, 2018: Research on mid-depth current of basin scale in the South China Sea based on historical Argo observations. *Haiyang Xuebao, 40*, 1-14,

Xu, J. and L. Gao, 2018: The temporal-spatial features of evaporation and precipitation and the effect on sea surface salinity in the tropical Indian Ocean. *Haiyang Xuebao*, 40, 90-102,

2017 (419)

Bai, Y., H. Song, Y. Guan, and S. Yang, 2017: Estimating depth of polarity conversion of
shoaling internal solitary waves in the northeastern South China Sea. *Continental Shelf Research, 143*, 9-17, http://dx.doi.org/10.1016/j.csr.2017.05.014

de Boisséson, E., M. A. Balmaseda, and M. Mayer, 2017: Ocean heat content variability in an ensemble of twentieth century ocean reanalyses. *Climate Dynamics*, https://doi.org/10.1007/s00382-017-3845-0

Dong, S., D. Volkov, G. Goni, R. Lumpkin, and G. R. Foltz, 2017: Near-surface salinity and

Frajka-Williams, E., C. Beaulieu, and A. Duchez, 2017: Emerging negative Atlantic Multidecadal Oscillation index in spite of warm subtropics. *Scientific Reports, 7*, 11224, https://doi.org/10.1038/s41598-017-11046-x

Jain, V., D. Shankar, P. N. Vinayachandran, A. Kankonkar, A. Chatterjee, P. Amol, A. M.

Karmakar, A., A. Parekh, J. S. Chowdary, and C. Gnanaseelan, 2017: Inter comparison of Tropical Indian Ocean features in different ocean reanalysis products. *Climate Dynamics*, https://doi.org/10.1007/s00382-017-3910-8

Katsumata, K., 2017: Eddies Observed by Argo Floats. Part II: Form Stress and Streamline

Li, Z.-L. and P. Wen, 2017: Comparison between the response of the Northwest Pacific

Liu, Z., X. Wu, J. Xu, H. Li, S. Lu, C. Sun, and M. Cao, 2017: China Argo project: progress in
China Argo ocean observations and data applications. *Acta Oceanologica Sinica*, 1-11, http://dx.doi.org/10.1007/s13131-017-1035-x

Olsen, A., 2017: Autonomous observing platform CO2 data shed new light on the Southern

Roberts, C. D., M. D. Palmer, R. P. Allan, D. G. Desbruyeres, P. Hyder, C. Liu, and D. Smith,

Sandery, P. A. and P. Sakov, 2017: Ocean forecasting of mesoscale features can deteriorate by increasing model resolution towards the submesoscale. *Nature Communications, 8*, 1566, https://doi.org/10.1038/s41467-017-01595-0

Vitale, S. S., S. F. DiMarco, H. F. Seidel, and Z. Wang, 2017: Circulation analysis in the northwest Indian Ocean using ARGO floats and surface drifter observations, and

Meteorological Society, **143**, 1787-1803, http://dx.doi.org/10.1002/qj.3036

Xue, Y., C. Wen, X. Yang, D. Behringer, A. Kumar, G. Vecchi, A. Rosati, and R. Gudgel, 2017:

Zang, Z., Z. G. Xue, N. Bi, Z. Yao, X. Wu, Q. Ge, and H. Wang, 2017: Seasonal and

Zhang, Z., H. Xue, F. Chai, and Y. Chao, 2017: Variability of the Pacific North Equatorial

Zhou, C., X. Ding, J. Zhang, J. Yang, and Q. Ma, 2017: An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data. *Ocean Dynamics, 67*, 1523-1533, https://doi.org/10.1007/s10236-017-1104-x

2016 (407)

Alexeev, V. A., V. V. Ivanov, I. A. Repina, O. Y. Lavrova, and S. V. Stanichny, 2016: Convective structures in the Lofoten Basin based on satellite and Argo data. *Izvestiya, Atmospheric and Oceanic Physics, 52*, 1064-1077, http://dx.doi.org/10.1134/S0001433816090036

Ocean. Bulletin of the American Meteorological Society, 97, S84 - S87, http://dx.doi.org/10.1175/2016BAMSStateoftheClimate.1

Hosoda, K. and F. Sakaida, 2016: Global Daily High-Resolution Satellite-Based Foundation Sea Surface Temperature Dataset: Development and Validation against Two

Huang, X., Z. Chen, W. Zhao, Z. Zhang, C. Zhou, Q. Yang, and J. Tian, 2016: An extreme internal solitary wave event observed in the northern South China Sea. *Scientific Reports*, 6, 30041, http://dx.doi.org/10.1038/srep30041

Korotaev, G. K., P. N. Lishaev, and V. V. Knysy, 2016: Reconstruction of the three-dimensional salinity and temperature fields of the Black Sea on the basis of satellite altimetry measurements. *Izvestiya, Atmospheric and Oceanic Physics, 52*, 961-973, http://dx.doi.org/10.1134/S0001433816090152

Lin, Y.-C., L.-Y. Oey, J. Wang, and K.-K. Liu, 2016: Rossby Waves and Eddies Observed at a Temperature Mooring in Northern South China Sea. *Journal of Physical

Liu, W., S.-P. Xie, and J. Lu, 2016: Tracking ocean heat uptake during the surface warming hiatus. *Nat Commun*, 7, http://dx.doi.org/10.1038/ncomms10926

Mecklenburg, S., M. Drusch, L. Kaleschke, N. Rodriguez-Fernandez, N. Reul, Y. Kerr, J. Font,

Muni Krishna, K., 2016: Observational study of upper ocean cooling due to Phet super cyclone in the Arabian Sea. Advances in Space Research, 57, 2115-2120,

Pookkandy, B., D. Dommenget, N. Klingaman, S. Wales, C. Chung, C. Frauen, and H. Wolff, 2016: The role of local atmospheric forcing on the modulation of the ocean mixed layer depth in reanalyses and a coupled single column ocean model. Climate Dynamics, 47, 2991-3010, http://dx.doi.org/10.1007/s00382-016-3009-7

Querin, S., M. Bensi, V. Cardin, C. Solidoro, S. Bacer, L. Mariotti, F. Stel, and V. Malačić, 2016: Saw-tooth modulation of the deep-water thermohaline properties in the southern

Rosburg, K. C., K. A. Donohue, and E. P. Chassignet, 2016: Three-dimensional model-observation comparison in the Loop Current region. *Dynamics of*
Atmospheres and Oceans, 76, Part 2, 283-305, http://doi.org/10.1016/j.dynatmoce.2016.05.001

Sarkisyan, A. S., 2016: Main directions in the simulation of physical characteristics of the World Ocean and seas. Izvestiya, Atmospheric and Oceanic Physics, 52, 335-340, http://dx.doi.org/10.1134/S0001433816040101

Storto, A., 2016: Variational quality control of hydrographic profile data with non-Gaussian

Thoppil, P. G., E. J. Metzger, H. E. Hurlburt, O. M. Smestad, and H. Ichikawa, 2016: The current system east of the Ryukyu Islands as revealed by a global ocean reanalysis. *Progress in Oceanography*, **141**, 239-258,

Yan, X.-H., T. Boyer, K. Trenberth, T. R. Karl, S.-P. Xie, V. Nieves, K.-K. Tung, and D. Roemmich,

Zhao, M., H. H. Hendon, Y. Yin, and O. Alves, 2016: Variations of Upper-Ocean Salinity
Associated with ENSO from PEODAS Reanalyses. *Journal of Climate*, **29**, 2077-2094, [10.1175/JCLI-D-15-0650.1](http://dx.doi.org/10.1175/JCLI-D-15-0650.1)

2015 (392)

Anilkumar, N., J. V. George, R. Chacko, N. Nuncio, and P. Sabu, 2015: Variability of fronts,

Barton, A. D., M. S. Lozier, and R. G. Williams, 2015: Physical controls of variability in North

Bushinsky, S. M. and S. Emerson, 2015: Marine biological production from in situ oxygen

Chao, Y., J. D. Farrara, G. Schumann, K. M. Andreadis, and D. Moller, 2015: Sea surface salinity variability in response to the Congo river discharge. *Continental Shelf Research*

Dong, S., G. Goni, and R. Lumpkin, 2015: Mixed-layer salinity budget in the SPURS region on seasonal to interannual time scales. Oceanography, 28, 78-85, http://dx.doi.org/10.5670/oceanog.2015.05

Frenger, I., M. Münich, N. Gruber, and R. Knutti, 2015: Southern Ocean eddy

Gasparin, F., D. Roemmich, J. Gilson, and B. Cornuelle, 2015: Assessment of the

Jonsson, B. F., S. Doney, J. Dunne, and M. L. Bender, 2015: Evaluating Southern Ocean biological production in two ocean biogeochemical models on daily to seasonal

Kim, H.-J. and J.-B. Ahn, 2015: Improvement in Prediction of the Arctic Oscillation with a Realistic Ocean Initial Condition in a CGCM. Journal of Climate, 28, 8951-8967, http://dx.doi.org/10.1175/JCLI-D-14-00457.1

Men, W., J. He, F. Wang, Y. Wen, Y. Li, J. Huang, and X. Yu, 2015: Radioactive status of seawater in the northwest Pacific more than one year after the Fukushima nuclear accident. *Sci. Rep., 5*, http://dx.doi.org/10.1038/srep07757

Muni Krishna, K. and G. Song, 2015: Physical and biological changes in the south Bay of

66-77, http://dx.doi.org/10.5670/oceanog.2015.11
Sakov, P. and P. A. Sandery, 2015: Comparison of EnOI and EnKF regional ocean reanalysis systems. Ocean Modelling, 89, 45-60, http://dx.doi.org/10.1016/j.ocemod.2015.02.003
Schiller, A., M. Herzfeld, R. Brinkman, F. Rizwi, and J. Andrewartha, 2015: Cross-shelf

Tortell, P. D., H. C. Bittig, A. Körtzinger, E. M. Jones, and M. Hoppema, 2015: Biological and

Wang, Z., I. Yashayaev, and B. Greenan, 2015: Seasonality of the inshore Labrador current over the Newfoundland shelf. *Continental Shelf Research, 100*, 1-10, https://doi.org/10.1016/j.csr.2015.03.010

White, R. H., 2015: Using multiple passive tracers to identify the importance of the North Brazil undercurrent for Atlantic cold tongue variability. *Quarterly Journal of the Royal Meteorological Society, 141*, 2505-2517, http://dx.doi.org/10.1002/qj.2536

Zhi, H., R.-H. Zhang, P. Lin, and L. Wang, 2015: Simulation of salinity variability and the

2014 (359)

Chaitanya, A. V. S., M. Lengaigne, J. Vialard, V. V. Gopalakrishna, F. Durand, C. Kranthikumar,
S. Amritash, V. Suneel, F. Papa, and M. Ravichandran, 2014: Salinity Measurements Collected by Fishermen Reveal a “River in the Sea” Flowing Along the Eastern Coast of India. *Bulletin of the American Meteorological Society*, 95, 1897-1908, http://dx.doi.org/10.1175/BAMS-D-12-00243.1

Chérubin, L. M., 2014: High-resolution simulation of the circulation in the Bahamas and

Modelling, 78, 35-89, http://dx.doi.org/10.1016/j.ocemod.2014.03.004

Jones, D. C., T. Ito, Y. Takano, and W.-C. Hsu, 2014: Spatial and seasonal variability of the

http://dx.doi.org/10.1016/j.dsr.2014.06.012

Lacorata, G., L. Palatella, and R. Santoleri, 2014: Lagrangian predictability characteristics of

Reboreda, R., R. Nolasco, C. G. Castro, X. A. Álvarez-Salgado, N. G. F. Cordeiro, H. Queiroga,
and J. Dubert, 2014: Seasonal cycle of plankton production in the Iberian margin based on a high resolution ocean model. *Journal of Marine Systems*, 139, 396-408, http://dx.doi.org/10.1016/j.jmarsys.2014.08.004

Umbert, M., N. Hoareau, A. Turiel, and J. Ballabrera-Poy, 2014: New blending algorithm to

Yuan, Y., G. Liao, C. Yang, Z. Liu, H. Chen, and Z.-G. Wang, 2014: Summer Kuroshio Intrusion through the Luzon Strait confirmed from observations and a diagnostic model in...

2013 (302)

Close, S. E., A. C. Naveira Garabato, E. L. McDonagh, B. A. King, M. Biuw, and L. Boehme, 2013: Control of Mode and Intermediate Water Mass Properties in Drake Passage by the Amundsen Sea Low. *Journal of Climate*, 26, 5102-5123,

Oceans, 118, 5109-5116, http://dx.doi.org/10.1002/jgrc.20367

Jaffres, J. B. D., 2013: Mixed Layer Depth Seasonality within the Coral Sea Based on Argo Data. *PLoS ONE, 8*, http://dx.doi.org/10.1371/journal.pone.0060985

Jin, S., T. van Dam, and S. Wdowinski, 2013: Observing and understanding the Earth system variations from space geodesy. *Journal of Geodynamics, 72*, 1-10, http://dx.doi.org/10.1016/j.jog.2013.08.001

Tribbia, 2013: An Ensemble Adjustment Kalman Filter for the CCSM4 Ocean Component. *Journal of Climate, 26*, 7392-7413, http://dx.doi.org/10.1175/JCLI-D-12-00402.1

Kashino, Y., 2013: Observational discovery of an eastward undercurrent below the North Equatorial Current. *OHM, 100*, 96,

Li, Y., F. Wang, and W. Han, 2013: Interannual sea surface salinity variations observed in the tropical North Pacific Ocean. Geophysical Research Letters, 40, 2194-2199, http://dx.doi.org/10.1002/grl.50429

Marta-Almeida, M., M. Ruiz-Villarreal, J. Pereira, P. Otero, M. Cirano, X. Zhang, and R. D.

Stanev, E. V., Y. He, S. Grayek, and A. Boetius, 2013: Oxygen dynamics in the Black Sea as seen by Argo profiling floats. *Geophysical Research Letters*, 40, 3085-3090,

Våge, K., R. S. Pickart, M. A. Spall, G. W. K. Moore, H. Valdimarsson, D. J. Torres, S. Y.

2012 (260)

Baird, M. E. and K. R. Ridgway, 2012: The southward transport of sub-mesoscale lenses of

Chang, Y.-S. and H.-R. Shin, 2012: Objective analysis of monthly temperature and salinity around the southwestern East Sea (Japan Sea) on a 0.1° grid. *Continental Shelf Research, 45*, 54-64, http://dx.doi.org/10.1016/j.csr.2012.06.001

Gouretski, V., J. Kennedy, T. Boyer, and A. Köhl, 2012: Consistent near-surface ocean warming since 1900 in two largely independent observing networks. *Geophysical

Henry, O., P. Prandi, W. Llovel, A. Cazenave, S. Jevrejeva, D. Stammer, B. Meyssignac, and N.

Johnson, G. C., S. Schmidtko, and J. M. Lyman, 2012: Relative contributions of temperature and salinity to seasonal mixed layer density changes and horizontal density

Plaza, M. A. S., J. L. Pelegrí, F. Machín, and V. B. Barrios, 2012: Inter-decadal changes in stratification and double diffusion in a transatlantic section along 7.5 degrees N. *Scientia Marina*, 76, 189-207, http://dx.doi.org/10.3989/scimar.03616.19G

Yin, X., F. Qiao, Y. Yang, C. Xia, and X. Chen, 2012: Argo data assimilation in ocean general

Barbero, L., J. Boutin, L. Merlivat, N. Martin, T. Takahashi, S. C. Sutherland, and R.

Chen, S., D. Wang, and Z. X. Zhang, 2011: Comparison of PFL Data from WOD09 and Argo Data. *Ocean Technology*, 4, 21-32,

David, D. T., S. P. Kumar, P. Byju, M. S. Sarma, A. Suryanarayana, and V. S. N. Murty, 2011:

He, Z. J., H. L. Fu, and G. J. Han, 2011: The impact of Argo data on the forecast accuracy of temperature and salinity in the China coastal waters and adjacent seas. *A Collection of Argo research papers*, Ocean Press, 72-81,

Kimizuka, M., F. Kobashi, and N. Iwasaka, 2011: Water characteristics and temporal variations of the warm core ring of Sanriku of Japan observed by Argo floats. *Oceanography in Japan*, **20**, 149-165,

Li, W., G. J. Han, and Q. Li, 2011: Impact of Argo data on the regional ocean reanalysis for China coastal waters and adjacent seas. *A Collection of Argo research papers*, Ocean Press, 96-105.

Rhein, M., D. Kieke, S. Huttli-Kabus, A. Roessler, C. Mertens, R. Meissner, B. Klein, C. W.

Yu, T., G. J. Han, and W. Li, 2011: The thermohaline structure of Southern Ocean eddies: a case study using Argo floats. *A Collection of Argo research papers*, Ocean Press, 166-175,

Zalesny, V. B., N. B. Zakharova, and A. V. Gusev, 2011: Four-dimensional problem of

2010 (227)

Aoki, S., Y. Sasai, H. Sasaki, H. Mitsudera, and G. Williams, 2010: The cyclonic circulation in

Boss, E. and M. Behrenfeld, 2010: In situ evaluation of the initiation of the North Atlantic phytoplankton bloom. *Geophysical Research Letters*, 37, L18603,

Corre, L., L. Terray, M. Balmaseda, A. Ribes, and A. Weaver, 2010: Can oceanic reanalyses be used to assess recent anthropogenic changes and low-frequency internal variability of upper ocean temperature? *Climate Dynamics*, 38, 877–896, http://dx.doi.org/10.1007/s00382-010-0950-8

Donohue, K. A., D. R. Watts, K. L. Tracey, A. D. Greene, and M. Kennelly, 2010: Mapping Circulation in the Kuroshio Extension with an Array of Current and Pressure...

Hartoko, A., 2010: SPATIAL DISTRIBUTION OF Thunnus. sp, VERTICAL AND HORIZONTAL SUB-SURFACE MULTILAYER TEMPERATURE PROFILES OF IN-SITU AGRO FLOAT

Hosoda, S., 2010: Surface layer salinity change in the global ocean - hydrological cycle change detected by Argo. *Kaiyo Monthly*, **42**, 621-627,

Hosoda, S. and M. Hirano, 2010: Argo float maintenance and checking at JAMSTEC. *Blue Earth, Special Issue 2010*, 22-23,

Hoteit, I., B. Cornuelle, and P. Heimbach, 2010: An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in

Katsumata, K. and H. Yoshinari, 2010: Uncertainties in global mapping of Argo drift data at

Mizuno, K., 2010: Argo Chronicle. Kaiyo Monthly, 42, 715-721,

Mooers, C. N. K., 2010: Quasi-Operational Coastal Ocean Nowcast/Forecast Systems. Terrestrial Atmospheric and Oceanic Sciences, 21, 181-193, http://dx.doi.org/10.3319/TAO.2009.06.08.04(IWNOP)

Nerem, R. S., D. P. Chambers, E. W. Leuliette, G. Mitchum, M. Merrifield, and J. Willis, 2010: Observations of Sea Level Change: What Have We Learned and What are the

Oka, E., 2010: Mode Waters in the North Pacific Ocean. Aquabiology, 32, 205-210,

Rintoul, S., K. Speer, M. Sparrow, M. P. Meredith, E. Hofmann, E. Fahrbach, C. Summerhayes,

Sarmiento, J. L., R. D. Slater, J. Dunne, A. Gnanadesikan, and M. R. Hiscock, 2010: Efficiency
of small scale carbon mitigation by patch iron fertilization. *Biogeosciences, 7*, 3593-3624, http://dx.doi.org/10.5194/bg-7-3593-2010

Sekiguchi, H. and N. Inoue, 2010: Larval recruitment and fisheries of the spiny lobster *Panulirus japonicas* coupling with the Kuroshio subgyre circulation in the western North Pacific: a review. *Journal of the marine biology association of India, 52*, 195-207,

Suga, T., 2010: Influence of subtropical mode waters on primary production. *Aquatic Biology*, **32**, 218-225,

Thresher, R. E., N. C. Wilson, C. M. MacRae, and H. Neil, 2010: Temperature effects on the calcite skeletal composition of deep-water gorgonians (Isididae). *Geochimica et
Cosmochimica Acta, 74, 4655-4670, http://dx.doi.org/10.1016/j.gca.2010.05.024

Yang, Y. J., Y. F. Fu, and L. Sun, 2010: Responses of the upper ocean to Typhoon Tingting observed from multiplatform satellites and Argo float (in Chinese). *Journal of

Zhou, H., D. L. Yuan, R. X. Li, and L. He, 2010: The western South China Sea currents from

2009 (121)

Dombrowsky, E., L. Bertino, G. B. Brassington, E. P. Chassignet, F. Davidson, H. E. Hurlburt, M.

Oka, E., 2009: Seasonal and interannual variation of North Pacific Subtropical Mode Water in

2008 (104)

Barre, N., C. Provost, N. Sennechael, and J. H. Lee, 2008: Circulation in the Ona Basin,

Gronell, A. and S. E. Wijffels, 2008: A semiautomated approach for quality controlling large historical ocean temperature archives. *Journal of Atmospheric and Oceanic Technology*, 25, 990-1003, http://dx.doi.org/10.1175/jtecho539.1

Li, W., Y. F. Xie, Z. J. He, G. J. Han, K. X. Liu, J. R. Ma, and D. Li, 2008: Application of the Multigrid Data Assimilation Scheme to the China Seas’ Temperature Forecast. *Journal of Atmospheric and Oceanic Technology, 25,* 2106-2116, http://dx.doi.org/10.1175/2008jtecho510.1

McDonagh, E. L., H. L. Bryden, B. A. King, and R. J. Sanders, 2008: The circulation of the Indian Ocean at 32 degrees S. *Progress in Oceanography, 79,* 20-36,

Riser, S. C., J. Nystuen, and A. Rogers, 2008: Monsoon effects in the Bay of Bengal inferred

Xie, J. P., J. Zhu, and Y. Li, 2008: Assessment and inter-comparison of five high-resolution

2007 (93)

Huang, Y. P., L. J. Kao, and F. E. Sandnes, 2007: Predicting ocean salinity and temperature variations using data mining and fuzzy inference. *International Journal of Fuzzy Systems, 9*, 143-151,

and SBE-41 CTDs. *Journal of Atmospheric and Oceanic Technology*, 24, 1117-1130, http://dx.doi.org/10.1175/JTECH2016.1

Yasuda, I. and T. Watanabe, 2007: Chlorophyll a variation in the Kuroshio Extension revealed with a mixed-layer tracking float: implication on the long-term change of Pacific

2005 (54)

Kobayashi, T. and S. Minato, 2005: What observation scheme should we use for profiling floats to achieve the argo goal for salinity measurement accuracy? - Suggestions from software calibration. Journal of Atmospheric and Oceanic Technology, 22, 1588-1601, http://dx.doi.org/10.1175/JTECH1798.1

Mooers, C. N. K., I. Bang, and P. J. Sandoval, 2005: Comparisons between observations and

Yimin, L., W. Li, and P. Zhang, 2005: NCC 4-Dimensional Ocean Data Assimilation System and the Studies on its Results in the Middle Pacific. *Acta Oceanologica Sinica*, 27, 27-35,

Youn, Y. H., H. Lee, Y. S. Chang, and P. Thadathil, 2005: Validation of Salinity Data from Argo floats: Comparison between the older Argo floats and that of later deployments.

Vargas-Yanez, M., G. Parrilla, A. Lavin, P. Velez-Belchi, and C. Gonzalez-Pola, 2004: Temperature and salinity increase in the eastern North Atlantic along the 24.5

2003 (21)

2002 (20)

Marchand, P. and J. Servain, 2002: NOR-50: Fast research vessel for operational oceanography - Implementing PIRATA & Argo programs in the Tropical & South Atlantic in a practical, economic way. Sea Technology, 43, 49-54,

Riser, S. C., 2002: Studying the global ocean circulation with profiling floats. *Argos Forum, 59*, 4-7,

2001 (16)

Gille, S. T., 2001: Southern Ocean ALACE float temperatures are warmer than historic temperatures. *CLIVAR Exchanges, 22*.

Pingree, R. and B. Sinha, 2001: Westward moving waves or eddies (Storms) on the Subtropical/Azores Front near 32.5N? Interpretation of the Eulerian currents and temperature records at moorings 155 (35.5W) and 156 (34.4W). *Journal of Marine Systems*, **29**, 239-276, http://dx.doi.org/10.1016/S0924-7963(01)00019-7

2000 (8)

Wilson, S., 2000: Launching the Argo Armada. *Oceanus*, **42**, 17-19,
1999 (4)

1998 (4)
Argo_Steering_Team, 1998: On the design and Implementation of Argo - an initial plan for the global array of profiling floats. *International CLIVAR Project Office Report*, 21, 32,

1997 (1)

1996 (2)
Davis, R. E., 1996: ALACEs return data on mean circulation in the western South Pacific. *US WOCE Implementation Report*, 8, 7-10,

1995 (1)
Davis, R. E., 1995: ALACE tracks subsurface ocean currents with Argos. *Argos Newsletter*, 49, 5,7,
1992 (1)

1991 (2)

Davis, R. E., 1991: LAGRANGIAN OCEAN STUDIES. *Annual Review of Fluid Mechanics, 23*, 43-64,