This is a bibliography of papers published using BGC Argo Mission float data.

A complete list of all Argo publications is also maintained on this site.

To learn how to properly cite Argo data, click here.

Please send citations for Argo articles to keep this part of the bibliography updated.

Updated January 2, 2024

Click here to download this file in pdf form.

2024 |2023 |2022 |2021 |2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2006 | 2005 | 2004 | 2002

2024 (3)

Coro, G. (2024), An Open Science oriented Bayesian interpolation model for marine parameter observations, Environmental Modelling & Software, 172, 105901, doi:

Gray, A. R. (2024), The Four-Dimensional Carbon Cycle of the Southern Ocean, Annual Review of Marine Science, 16(1), null, doi:

Shee, A., S. Sil, and R. Deogharia (2024), Three-dimensional characteristics of mesoscale eddies in the western boundary current region of the Bay of Bengal using ROMS-NPZD, Dynamics of Atmospheres and Oceans, 105, 101424, doi:

2023 (88)

Alkire, M. B., and S. Riser (2023), Net Community Production in the Argentine Basin Estimated From Nitrate Drawdown Using Biogeochemical Argo Floats, Journal of Geophysical Research: Oceans, 128(8), e2023JC019858, doi:

Anjaneyan, P., J. Kuttippurath, P. V. Hareesh Kumar, S. M. Ali, and M. Raman (2023), Spatio-temporal changes of winter and spring phytoplankton blooms in Arabian sea during the period 1997–2020, Journal of Environmental Management, 332, 117435, doi:

Arostegui, M. C., B. Muhling, E. Culhane, H. Dewar, S. S. Koch, and C. D. Braun (2023), A shallow scattering layer structures the energy seascape of an open ocean predator, Science Advances, 9(40), eadi8200, doi:

Bach, L. T., V. Tamsitt, K. Baldry, J. McGee, E. C. Laurenceau-Cornec, R. F. Strzepek, Y. Xie, and P. W. Boyd (2023), Identifying the Most (Cost-)Efficient Regions for CO2 Removal With Iron Fertilization in the Southern Ocean, Glob. Biogeochem. Cycle, 37(11), e2023GB007754, doi:

Bendtsen, J., C. R. Vives, and K. Richardson (2023), Primary production in the North Atlantic estimated from in situ water column data observed by Argo floats and remote sensing, Frontiers in Marine Science, 10, doi:

Boyd, P. W., H. Claustre, L. Legendre, J.-P. Gattuso, and P. Y. Le Traon (2023), Operational Monitoring of Open-Ocean Carbon Dioxide Removal Deployments: Detection, Attribution, and Determination of Side Effects, Oceanography, 36(1), 2-10, doi:

Brand, S. V. S., C. J. Prend, and L. D. Talley (2023), Modification of North Atlantic Deep Water by Pacific/Upper Circumpolar Deep Water in the Argentine Basin, Geophys. Res. Lett., 50(2), e2022GL099419, doi:

Brewin, R. J. W., et al. (2023), Ocean carbon from space: Current status and priorities for the next decade, Earth-Science Reviews, 240, 104386, doi:

Bushinsky, S. M., and I. Cerovečki (2023), Subantarctic Mode Water Biogeochemical Formation Properties and Interannual Variability, AGU Advances, 4(2), e2022AV000722, doi:

Chamberlain, P., L. D. Talley, B. Cornuelle, M. Mazloff, and S. T. Gille (2023), Optimizing the Biogeochemical Argo Float Distribution, J. Atmos. Ocean. Technol., 40(11), 1355-1379, doi:

Chen, L., X. Pan, J. Zhang, C. B. Demeaux, and Y. Wang (2023), Inversion diffuse attenuation coefficient of photosynthetically active radiation based on deep learning, Opt. Express, 31(23), 37365-37380, doi:

Chidichimo, M. P., et al. (2023), Energetic overturning flows, dynamic interocean exchanges, and ocean warming observed in the South Atlantic, Communications Earth & Environment, 4(1), 10, doi:

Coggins, A., A. J. Watson, U. Schuster, N. Mackay, B. King, E. McDonagh, and A. J. Poulton (2023), Surface ocean carbon budget in the 2017 south Georgia diatom bloom: Observations and validation of profiling biogeochemical argo floats, Deep Sea Research Part II: Topical Studies in Oceanography, 209, 105275, doi:

Cox, I., R. J. W. Brewin, G. Dall’Olmo, K. Sheen, S. Sathyendranath, R. Rasse, and O. Ulloa (2023), Distinct habitat and biogeochemical properties of low-oxygen-adapted tropical oceanic phytoplankton, Limnol. Oceanogr., 68(9), 2022-2039, doi:

Dall’Olmo, G., et al. (2023), Real-time quality control of optical backscattering data from Biogeochemical-Argo floats [version 2; peer review: 4 approved], Open Research Europe, 2(118), doi:

Ellison, E., A. Mashayek, and M. Mazloff (2023), The Sensitivity of Southern Ocean Air-Sea Carbon Fluxes to Background Turbulent Diapycnal Mixing Variability, Journal of Geophysical Research: Oceans, 128(9), e2023JC019756, doi:

Flores, E., I. Fernández-Urruzola, S. I. Cantarero, M. Pizarro-Koch, M. Zabel, J. Sepúlveda, and O. Ulloa (2023), Particulate Organic Matter in the Atacama Trench: Tracing Sources and Possible Transport Mechanisms to the Hadal Seafloor, Journal of Geophysical Research: Biogeosciences, 128(8), e2023JG007401, doi:

Giddy, I. S., S. A. Nicholson, B. Y. Queste, S. Thomalla, and S. Swart (2023), Sea-Ice Impacts Inter-Annual Variability of Phytoplankton Bloom Characteristics and Carbon Export in the Weddell Sea, Geophys. Res. Lett., 50(16), e2023GL103695, doi:

Grégoire, M., et al. (2023), Monitoring Black Sea environmental changes from space: New products for altimetry, ocean colour and salinity. Potentialities and requirements for a dedicated in-situ observing system, Frontiers in Marine Science, 9, doi:

Habib, J., et al. (2023), Seasonal and interannual variability of the pelagic ecosystem and of the organic carbon budget in the Rhodes Gyre (eastern Mediterranean): influence of winter mixing, Biogeosciences, 20(15), 3203-3228, doi:

Hauck, J., et al. (2023), The Southern Ocean Carbon Cycle 1985–2018: Mean, Seasonal Cycle, Trends, and Storage, Glob. Biogeochem. Cycle, 37(11), e2023GB007848, doi:

Hauck, J., C. Nissen, P. Landschützer, C. Rödenbeck, S. Bushinsky, and A. Olsen (2023), Sparse observations induce large biases in estimates of the global ocean CO2 sink: an ocean model subsampling experiment, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381(2249), 20220063, doi:

He, Q., D. J. McGillicuddy, X. Xing, S. Cai, W. Zhan, Y. He, J. Xu, and H. Zhan (2023), Subsurface phytoplankton responses to ocean eddies can run counter to satellite-based inference from surface properties in subtropical gyres, Prog. Oceanogr., 218, 103118, doi:

Huang, Y., Andrea J. Fassbender, and Seth M. Bushinsky (2023), Biogenic carbon pool production maintains the Southern Ocean carbon sink, Proceedings of the National Academy of Sciences, 120(18), e2217909120, doi:

Izett, J. G., J. P. Mattern, A. M. Moore, and C. A. Edwards (2023), Evaluating Alternate Methods of 4D-Var Data Assimilation in a Coupled Hydrodynamic—Four-Component Biogeochemical Model of the California Current System, Ocean Model., 185, 102253, doi:

Johnson, G. C., and A. J. Fassbender (2023), After two decades, Argo at PMEL, looks to the future, Oceanography, 36(2/3), 54-59, doi:

Johnson, L., et al. (2023), Assessment of Oceanographic Conditions during the North Atlantic EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Field Campaign, Prog. Oceanogr., 103170, doi:

Keppler, L., P. Landschützer, S. K. Lauvset, and N. Gruber (2023), Recent Trends and Variability in the Oceanic Storage of Dissolved Inorganic Carbon, Glob. Biogeochem. Cycle, 37(5), e2022GB007677, doi:

Lacour, L., J. Llort, N. Briggs, P. G. Strutton, and P. W. Boyd (2023), Seasonality of downward carbon export in the Pacific Southern Ocean revealed by multi-year robotic observations, Nature Communications, 14(1), 1278, doi:

Land, P. E., H. S. Findlay, J. D. Shutler, J. F. Piolle, R. Sims, H. Green, V. Kitidis, A. Polukhin, and I. I. Pipko (2023), OceanSODA-MDB: a standardised surface ocean carbonate system dataset for model–data intercomparisons, Earth Syst. Sci. Data, 15(2), 921-947, doi:

Lévy, M., D. Couespel, C. Haëck, M. G. Keerthi, I. Mangolte, and C. J. Prend (2023), The Impact of Fine-Scale Currents on Biogeochemical Cycles in a Changing Ocean, Annual Review of Marine Science, doi:

Linford, P., et al. (2023), Recent Deoxygenation of Patagonian Fjord Subsurface Waters Connected to the Peru–Chile Undercurrent and Equatorial Subsurface Water Variability, Glob. Biogeochem. Cycle, 37(6), e2022GB007688, doi:

Liu, Y., and X. Li (2023), Impact of surface and subsurface-intensified eddies on sea surface temperature and chlorophyll a in the northern Indian Ocean utilizing deep learning, Ocean Sci., 19(6), 1579-1593, doi:

Liu, Z.-H., et al. (2023), Twenty years of ocean observations with China Argo, Acta Oceanol. Sin., doi:

Mazloff, M. R., A. Verdy, S. T. Gille, K. S. Johnson, B. D. Cornuelle, and J. Sarmiento (2023), Southern Ocean Acidification Revealed by Biogeochemical-Argo Floats, Journal of Geophysical Research: Oceans, 128(5), e2022JC019530, doi:

McClish, S., and S. M. Bushinsky (2023), Majority of Southern Ocean Seasonal Sea Ice Zone Bloom Net Community Production Precedes Total Ice Retreat, Geophys. Res. Lett., 50(20), e2023GL103459, doi:

McKee, D. C., S. C. Doney, A. Della Penna, E. S. Boss, P. Gaube, and M. J. Behrenfeld (2023), Biophysical Dynamics at Ocean Fronts Revealed by Bio-Argo Floats, Journal of Geophysical Research: Oceans, 128(3), e2022JC019226, doi:

Mignot, A., et al. (2023), Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design, Biogeosciences, 20(7), 1405-1422, doi:

Mo, A., K. Park, J. Park, D. Hahm, K. Kim, Y. H. Ko, J. L. Iriarte, J.-O. Choi, and T.-W. Kim (2023), Assessment of austral autumn air–sea CO2 exchange in the Pacific sector of the Southern Ocean and dominant controlling factors, Frontiers in Marine Science, 10, doi:

Mogen, S. C., et al. (2023), Skillful Multi-Month Predictions of Ecosystem Stressors in the Surface and Subsurface Ocean, Earth’s Future, 11(11), e2023EF003605, doi:

Moreau, S., et al. (2023), Wind-driven upwelling of iron sustains dense blooms and food webs in the eastern Weddell Gyre, Nature Communications, 14(1), 1303, doi:

Neukermans, G., L. T. Bach, A. Butterley, Q. Sun, H. Claustre, and G. R. Fournier (2023), Quantitative and mechanistic understanding of the open ocean carbonate pump – perspectives for remote sensing and autonomous in situ observation, Earth-Science Reviews, 239, 104359, doi:

Niebergall, A. K., et al. (2023), Evaluation of new and net community production estimates by multiple ship-based and autonomous observations in the Northeast Pacific Ocean, Elementa: Science of the Anthropocene, 11(1), 00107, doi:

Oliver, H., D. J. McGillicuddy Jr, K. M. Krumhardt, M. C. Long, N. R. Bates, B. C. Bowler, D. T. Drapeau, and W. M. Balch (2023), Environmental Drivers of Coccolithophore Growth in the Pacific Sector of the Southern Ocean, Glob. Biogeochem. Cycle, 37(11), e2023GB007751, doi:

Pan, T., X. He, Y. Bai, T. Li, F. Gong, and D. Wang (2023), Satellite retrieval of the linear polarization components of the water-leaving radiance in open oceans, Opt. Express, 31(10), 15917-15939, doi:

Picado, A., N. Vaz, I. Alvarez, and J. M. Dias (2023), Modelling coastal upwelling off NW Iberian Peninsula: New insights on the fate of phytoplankton blooms, Science of The Total Environment, 874, 162416, doi:

Pietropolli, G., L. Manzoni, and G. Cossarini (2023), Multivariate Relationship in Big Data Collection of Ocean Observing System, Applied Sciences, 13(9), doi:

Plant, J. N., C. M. Sakamoto, K. S. Johnson, T. L. Maurer, and M. B. Bif (2023), Updated temperature correction for computing seawater nitrate with in situ ultraviolet spectrophotometer and submersible ultraviolet nitrate analyzer nitrate sensors, Limnology and Oceanography: Methods, 21(10), 581-593, doi:

Quartly, G. D., J. Aiken, R. J. W. Brewin, and A. Yool (2023), The link between surface and sub-surface chlorophyll-a in the centre of the Atlantic subtropical gyres: a comparison of observations and models, Frontiers in Marine Science, 10, doi:

Quay, P. (2023), Organic Matter Export Rates and the Pathways of Nutrient Supply in the Ocean, Glob. Biogeochem. Cycle, 37(8), e2023GB007855, doi:

Ren, A. S., D. L. Rudnick, and A. Twombly (2023), Drift Characteristics of Sea-Bird Dissolved Oxygen Optode Sensors, J. Atmos. Ocean. Technol., 40(12), 1645-1656, doi:

Renosh, P. R., J. Zhang, R. Sauzède, and H. Claustre (2023), Vertically Resolved Global Ocean Light Models Using Machine Learning, Remote Sensing, 15(24), doi:

Rickard, G. J., E. Behrens, S. Chiswell, C. S. Law, and M. H. Pinkerton (2023), Biogeochemical and Physical Assessment of CMIP5 and CMIP6 Ocean Components for the Southwest Pacific Ocean, Journal of Geophysical Research: Biogeosciences, 128(5), e2022JG007123, doi:

Russell, P., and C. Horvat (2023), Extreme South Pacific Phytoplankton Blooms Induced by Tropical Cyclones, Geophys. Res. Lett., 50(5), e2022GL100821, doi:

Ryan, C., M. Santangelo, B. Stephenson, T. A. Branch, E. A. Wilson, and M. S. Savoca (2023), Commercial krill fishing within a foraging supergroup of fin whales in the Southern Ocean, Ecology, 104(4), e4002, doi:

Ryan-Keogh, T. J., S. J. Thomalla, P. M. S. Monteiro, and A. Tagliabue (2023), Multidecadal trend of increasing iron stress in Southern Ocean phytoplankton, Science, 379(6634), 834-840, doi:

Sarmiento, J. L., et al. (2023), The Southern Ocean carbon and climate observations and modeling (SOCCOM) project: A review, Prog. Oceanogr., 219, 103130, doi:

Sauvé, J., A. R. Gray, C. J. Prend, S. M. Bushinsky, and S. C. Riser (2023), Carbon Outgassing in the Antarctic Circumpolar Current Is Supported by Ekman Transport From the Sea Ice Zone in an Observation-Based Seasonal Mixed-Layer Budget, Journal of Geophysical Research: Oceans, 128(11), e2023JC019815, doi:

Serra-Pompei, C., A. Hickman, G. L. Britten, and S. Dutkiewicz (2023), Assessing the Potential of Backscattering as a Proxy for Phytoplankton Carbon Biomass, Glob. Biogeochem. Cycle, 37(6), e2022GB007556, doi:

Sharp, J. D., A. J. Fassbender, B. R. Carter, G. C. Johnson, C. Schultz, and J. P. Dunne (2023), GOBAI-O2: temporally and spatially resolved fields of ocean interior dissolved oxygen over nearly 2 decades, Earth Syst. Sci. Data, 15(10), 4481-4518, doi:

Siegel, D. A., T. DeVries, I. Cetinić, and K. M. Bisson (2023), Quantifying the Ocean’s Biological Pump and Its Carbon Cycle Impacts on Global Scales, Annual Review of Marine Science, 15(1), 329-356, doi:

Siegel, D. A., T. DeVries, I. Cetinić, and K. M. Bisson (2023), Quantifying the Ocean’s Biological Pump and Its Carbon Cycle Impacts on Global Scales, Annual Review of Marine Science, 15(1), 329-356, doi:

Smyth, A. J., and R. T. Letscher (2023), Spatial and temporal occurrence of preformed nitrate anomalies in the subtropical North Pacific and North Atlantic oceans, Marine Chemistry, 252, 104248, doi:

Stoer, A. C., and K. Fennel (2023), Estimating ocean net primary productivity from daily cycles of carbon biomass measured by profiling floats, Limnology and Oceanography Letters, 8(2), 368-375, doi:

Stoer, A. C., et al. (2023), A census of quality-controlled Biogeochemical-Argo float measurements, Frontiers in Marine Science, 10, doi:

Strutton, P. G., T. W. Trull, H. E. Phillips, E. R. Duran, and S. Pump (2023), Biogeochemical Argo Floats Reveal the Evolution of Subsurface Chlorophyll and Particulate Organic Carbon in Southeast Indian Ocean Eddies, Journal of Geophysical Research: Oceans, 128(4), e2022JC018984, doi:

Sun, M., P. Chen, Z. Zhang, C. Zhong, C. Xie, and D. Pan (2023), Evaluation of the CALIPSO Lidar-observed particulate backscattering coefficient on different spatiotemporal matchup scales, Frontiers in Marine Science, 10, doi:

Taylor, B. A., G. A. MacGilchrist, M. R. Mazloff, and L. D. Talley (2023), Freshwater Displacement Effect on the Weddell Gyre Carbon Budget, Geophys. Res. Lett., 50(18), e2023GL103952, doi:

Terrats, L., H. Claustre, N. Briggs, A. Poteau, B. Briat, L. Lacour, F. Ricour, A. Mangin, and G. Neukermans (2023), BioGeoChemical-Argo Floats Reveal Stark Latitudinal Gradient in the Southern Ocean Deep Carbon Flux Driven by Phytoplankton Community Composition, Glob. Biogeochem. Cycle, 37(11), e2022GB007624, doi:

Thomalla, S. J., et al. (2023), Southern Ocean phytoplankton dynamics and carbon export: insights from a seasonal cycle approach, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381(2249), 20220068, doi:

Turner, K. E., D. M. Smith, A. Katavouta, and R. G. Williams (2023), Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations, Biogeosciences, 20(8), 1671-1690, doi:

Uitz, J., et al. (2023), Characterization of Bio-Optical Anomalies in the Kerguelen Region, Southern Indian Ocean: A Study Based on Shipborne Sampling and BioGeoChemical-Argo Profiling Floats, Journal of Geophysical Research: Oceans, 128(12), e2023JC019671, doi:

Vadakke-Chanat, S., and C. Jamet (2023), Validation protocol for the evaluation of space-borne lidar particulate back-scattering coefficient bbp, Frontiers in Remote Sensing, 4, doi:

Wang, A., B. Huang, J. Yang, G. Chen, and M. Radenkovic (2023), SCMNet: Toward Subsurface Chlorophyll Maxima Prediction Using Embeddings and Bi-GRU Network, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 9944-9950, doi:

Wang, B., and K. Fennel (2023), An Assessment of Vertical Carbon Flux Parameterizations Using Backscatter Data From BGC Argo, Geophys. Res. Lett., 50(3), e2022GL101220, doi:

Wang, T., S. Zhang, F. Chen, and L. Xiao (2023), The Seasonality of Eddy-Induced Chlorophyll-a Anomalies in the Kuroshio Extension System, Remote Sensing, 15(15), 3865, doi:

Woodstock, M. S., J. J. Kiszka, M. R. Ramírez-León, T. T. Sutton, K. Fennel, B. Wang, and Y. Zhang (2023), Cetacean-mediated vertical nitrogen transport in the oceanic realm, Limnol. Oceanogr., 68(11), 2445-2460, doi:

Wu, Y., and D. Qi (2023), The controversial Southern Ocean air-sea CO2 flux in the era of autonomous ocean observations, Science Bulletin, 68(21), 2519-2522, doi:

Wynn-Edwards, C. A., E. H. Shadwick, P. Jansen, C. Schallenberg, T. L. Maurer, and A. J. Sutton (2023), Subantarctic pCO2 estimated from a biogeochemical float: comparison with moored observations reinforces the importance of spatial and temporal variability, Frontiers in Marine Science, 10, doi:

Xing, Q., H. Yu, H. Wang, S.-i. Ito, and F. Chai (2023), Mesoscale eddies modulate the dynamics of human fishing activities in the global midlatitude ocean, Fish and Fisheries, 24(4), 527-543, doi:

Xing, X., P. Xiu, E. A. Laws, G. Yang, X. Liu, and F. Chai (2023), Light-Driven and Nutrient-Driven Displacements of Subsurface Chlorophyll Maximum Depth in Subtropical Gyres, Geophys. Res. Lett., 50(22), e2023GL104510, doi:

Youngs, M. K., M. A. Freilich, and N. S. Lovenduski (2023), Air-Sea CO2 Fluxes Localized by Topography in a Southern Ocean Channel, Geophys. Res. Lett., 50(18), e2023GL104802, doi:

Yumruktepe, V. Ç., E. A. Mousing, J. Tjiputra, and A. Samuelsen (2023), An along-track Biogeochemical Argo modelling framework: a case study of model improvements for the Nordic seas, Geosci. Model Dev., 16(22), 6875-6897, doi:

Zhang, T., et al. (2023), Environmental impacts of three Asian dust events in the northern China and the northwestern Pacific in spring 2021, Science of The Total Environment, 859, 160230, doi:

Zhang, Y., Y. Bai, X. He, T. Li, Z. Jiang, and F. Gong (2023), Three stages in the variation of the depth of hypoxia in the California Current System 2003–2020 by satellite estimation, Science of The Total Environment, 874, 162398, doi:

Zhang, Z., P. Chen, C. Jamet, D. Dionisi, Y. Hu, X. Lu, and D. Pan (2023), Retrieving bbp and POC from CALIOP: A deep neural network approach, Remote Sens. Environ., 287, 113482, doi:

Zheng, H., and W.-Z. Zhang (2023), An extraordinary chlorophyll-a enhancement event jointly induced by two sequential tropical cyclones in the Kuroshio region south of Japan, Frontiers in Marine Science, 10, doi:

Zhou, Y., S. Chen, W. Ma, J. Xi, Z. Zhang, and X. Xing (2023), Spatiotemporal variations of the oxycline and its response to subduction events in the Arabian Sea, Frontiers in Marine Science, 10, doi:

2022 (89)

Addey, C. I. (2022), Using Biogeochemical Argo floats to understand ocean carbon and oxygen dynamics, Nature Reviews Earth & Environment, 3(11), 739-739, doi:

Arteaga, L. A., M. J. Behrenfeld, E. Boss, and T. K. Westberry (2022), Vertical Structure in Phytoplankton Growth and Productivity Inferred From Biogeochemical-Argo Floats and the Carbon-Based Productivity Model, Glob. Biogeochem. Cycle, 36(8), e2022GB007389, doi:

Baetge, N., L. M. Bolaños, A. D. Penna, P. Gaube, S. Liu, K. Opalk, J. R. Graff, S. J. Giovannoni, M. J. Behrenfeld, and C. A. Carlson (2022), Bacterioplankton response to physical stratification following deep convection, Elementa: Science of the Anthropocene, 10(1), doi:

Barbieux, M., et al. (2022), Biological production in two contrasted regions of the Mediterranean Sea during the oligotrophic period: an estimate based on the diel cycle of optical properties measured by BioGeoChemical-Argo profiling floats, Biogeosciences, 19(4), 1165-1194, doi:

Beaton, A. D., et al. (2022), Lab-on-Chip for In Situ Analysis of Nutrients in the Deep Sea, ACS Sensors, 7(1), 89-98, doi:

Begouen Demeaux, C., and E. Boss (2022), Validation of Remote-Sensing Algorithms for Diffuse Attenuation of Downward Irradiance Using BGC-Argo Floats, Remote Sensing, 14(18), 4500, doi:

Bock, N., M. Cornec, H. Claustre, and S. Duhamel (2022), Biogeographical Classification of the Global Ocean From BGC-Argo Floats, Glob. Biogeochem. Cycle, 36(6), e2021GB007233, doi:

Brewin, R. J. W., G. Dall’Olmo, J. Gittings, X. Sun, P. K. Lange, D. E. Raitsos, H. A. Bouman, I. Hoteit, J. Aiken, and S. Sathyendranath (2022), A Conceptual Approach to Partitioning a Vertical Profile of Phytoplankton Biomass Into Contributions From Two Communities, Journal of Geophysical Research: Oceans, 127(4), e2021JC018195, doi:

Bruyant, F., et al. (2022), The Green Edge cruise: investigating the marginal ice zone processes during late spring and early summer to understand the fate of the Arctic phytoplankton bloom, Earth Syst. Sci. Data, 14(10), 4607-4642, doi:

Capet, A., G. Taburet, E. Mason, M. I. Pujol, M. Grégoire, and M.-H. Rio (2022), Using Argo Floats to Characterize Altimetry Products: A Study of Eddy-Induced Subsurface Oxygen Anomalies in the Black Sea, Frontiers in Marine Science, 9, doi:

Chamberlain, P. M. (2022), Semi-Lagrangian Float Motion and Observing System Design, Ph.D. thesis, 240 pp, University of California, San Diego, United States — California

Chen, H., F. A. Haumann, L. D. Talley, K. S. Johnson, and J. L. Sarmiento (2022), The Deep Ocean’s Carbon Exhaust, Glob. Biogeochem. Cycle, 36(7), e2021GB007156, doi:

Chen, J., X. Gong, X. Guo, X. Xing, K. Lu, H. Gao, and X. Gong (2022), Improved Perceptron of Subsurface Chlorophyll Maxima by a Deep Neural Network: A Case Study with BGC-Argo Float Data in the Northwestern Pacific Ocean, Remote Sensing, 14(3), 632, doi:

Chen, S., Y. Meng, S. Lin, and J. Xi (2022), Remote Sensing of the Seasonal and Interannual Variability of Surface Chlorophyll-a Concentration in the Northwest Pacific over the Past 23 Years (1997–2020), Remote Sensing, 14(21), doi:

Cheriyan, E., A. R. Rao, and K. V. Sanilkumar (2022), Response of sea surface temperature, chlorophyll and particulate organic carbon to a tropical cyclonic storm over the Arabian Sea, Southwest India, Dynamics of Atmospheres and Oceans, 97, 101287, doi:

Chiswell, S. M., A. Gutiérrez-Rodríguez, M. Gall, K. Safi, R. Strzepek, M. R. Décima, and S. D. Nodder (2022), Seasonal cycles of phytoplankton and net primary production from Biogeochemical Argo float data in the south-west Pacific Ocean, Deep Sea Research Part I: Oceanographic Research Papers, 187, 103834, doi:

Di Biagio, V., S. Salon, L. Feudale, and G. Cossarini (2022), Subsurface oxygen maximum in oligotrophic marine ecosystems: mapping the interaction between physical and biogeochemical processes, Biogeosciences, 19(23), 5553-5574, doi:

Ding, Y.-n., F. Yu, Q. Ren, F. Nan, R. Wang, Y. Liu, and Y. Tang (2022), The Physical-Biogeochemical Responses to a Subsurface Anticyclonic Eddy in the Northwest Pacific, Frontiers in Marine Science, 8, doi:

Dove, L. A., D. Balwada, A. F. Thompson, and A. R. Gray (2022), Enhanced Ventilation in Energetic Regions of the Antarctic Circumpolar Current, Geophys. Res. Lett., 49(13), e2021GL097574, doi:

Emerson, S., and B. Yang (2022), The Ocean’s Biological Pump: In Situ Oxygen Measurements in the Subtropical Oceans, Geophys. Res. Lett., 49(21), e2022GL099834, doi:

Falls, M., R. Bernardello, M. Castrillo, M. Acosta, J. Llort, and M. Galí (2022), Use of genetic algorithms for ocean model parameter optimisation: a case study using PISCES-v2_RC for North Atlantic particulate organic carbon, Geosci. Model Dev., 15(14), 5713-5737, doi:

Fennel, K., J. P. Mattern, S. C. Doney, L. Bopp, A. M. Moore, B. Wang, and L. Yu (2022), Ocean biogeochemical modelling, Nature Reviews Methods Primers, 2(1), 76, doi:

Fernández Castro, B., M. Mazloff, R. G. Williams, and A. C. Naveira Garabato (2022), Subtropical Contribution to Sub-Antarctic Mode Waters, Geophys. Res. Lett., 49(11), e2021GL097560, doi:

Fujiki, T., S. Hosoda, and N. Harada (2022), Phytoplankton blooms in summer and autumn in the northwestern subarctic Pacific detected by the mooring and float systems, J. Oceanogr., 78(2), 63-72, doi:

Galí, M., M. Falls, H. Claustre, O. Aumont, and R. Bernardello (2022), Bridging the gaps between particulate backscattering measurements and modeled particulate organic carbon in the ocean, Biogeosciences, 19(4), 1245-1275, doi:

Girishkumar, M. S. (2022), Surface chlorophyll blooms in the Southern Bay of Bengal during the extreme positive Indian Ocean dipole, Climate Dynamics, 59(5), 1505-1519, doi:

Gloege, L., M. Yan, T. Zheng, and G. A. McKinley (2022), Improved Quantification of Ocean Carbon Uptake by Using Machine Learning to Merge Global Models and pCO2 Data, Journal of Advances in Modeling Earth Systems, 14(2), e2021MS002620, doi:

Guo, M., P. Xiu, and X. Xing (2022), Oceanic Fronts Structure Phytoplankton Distributions in the Central South Indian Ocean, Journal of Geophysical Research: Oceans, 127(1), e2021JC017594, doi:

Horvat, C., K. Bisson, S. Seabrook, A. Cristi, and L. C. Matthes (2022), Evidence of phytoplankton blooms under Antarctic sea ice, Frontiers in Marine Science, 9, doi:

Hu, Q., X. Chen, X. He, Y. Bai, Q. Zhong, F. Gong, Q. Zhu, and D. Pan (2022), Seasonal Variability of Phytoplankton Biomass Revealed by Satellite and BGC-Argo Data in the Central Tropical Indian Ocean, Journal of Geophysical Research: Oceans, 127(10), e2021JC018227, doi:

Hu, Y., W. Shao, J. Li, C. Zhang, L. Cheng, and Q. Ji (2022), Short-Term Variations in Water Temperature of the Antarctic Surface Layer, Journal of Marine Science and Engineering, 10(2), 287, doi:

Huang, C., Y. Liu, Y. Luo, Y. Wang, X. Liu, Y. Zhang, Y. Zhuang, and Y. Tian (2022), Improvement and Assessment of Ocean Color Algorithms in the Northwest Pacific Fishing Ground Using Himawari-8, MODIS-Aqua, and VIIRS-SNPP, Remote Sensing, 14(15), 3610, doi:

Huang, Y., A. J. Fassbender, J. S. Long, S. Johannessen, and M. Bernardi Bif (2022), Partitioning the Export of Distinct Biogenic Carbon Pools in the Northeast Pacific Ocean Using a Biogeochemical Profiling Float, Glob. Biogeochem. Cycle, 36(2), e2021GB007178, doi:

Ito, T. (2022), Development of the Regional Carbon Cycle Model in the Central Pacific Sector of the Southern Ocean, Journal of Advances in Modeling Earth Systems, 14(6), e2021MS002757, doi:

Jeon, J., and T. Tomita (2022), Investigating the Effects of Super Typhoon HAGIBIS in the Northwest Pacific Ocean Using Multiple Observational Data, Remote Sensing, 14(22), doi:

Johnson, K. S., et al. (2022), Carbon to Nitrogen Uptake Ratios Observed Across the Southern Ocean by the SOCCOM Profiling Float Array, Journal of Geophysical Research: Oceans, 127(9), e2022JC018859, doi:

Kiko, R., et al. (2022), A global marine particle size distribution dataset obtained with the Underwater Vision Profiler 5, Earth Syst. Sci. Data, 14(9), 4315-4337, doi:

Koestner, D., D. Stramski, and R. A. Reynolds (2022), A Multivariable Empirical Algorithm for Estimating Particulate Organic Carbon Concentration in Marine Environments From Optical Backscattering and Chlorophyll-a Measurements, Frontiers in Marine Science, 9, doi:

Kolyuchkina, G. A., et al. (2022), Benthic community structure near the margin of the oxic zone: A case study on the Black Sea, J. Mar. Syst., 227, 103691, doi:

Kubryakov, A. A., and S. V. Stanichny (2022), Sinking velocity of small particles in the Black Sea: Vertical distribution and seasonal variability from continuous Bio-Argo measurements of backscattering, J. Mar. Syst., 227, 103695, doi:

LaBrie, R., et al. (2022), Deep ocean microbial communities produce more stable dissolved organic matter through the succession of rare prokaryotes, Science Advances, 8(27), eabn0035, doi:

Li, X., Z. Mao, H. Zheng, W. Zhang, D. Yuan, Y. Li, Z. Wang, and Y. Liu (2022), Process-Oriented Estimation of Chlorophyll-a Vertical Profile in the Mediterranean Sea Using MODIS and Oceanographic Float Products, Frontiers in Marine Science, 9, doi:

Li, X., Y.-Y. Xu, D. L. Kirchman, and W.-J. Cai (2022), Carbonate Parameter Estimation and Its Application in Revealing Temporal and Spatial Variation in the South and Mid-Atlantic Bight, USA, Journal of Geophysical Research: Oceans, 127(7), e2022JC018811, doi:

Ma, X., G. Chen, Y. Li, and L. Zeng (2022), Interannual variability of sea surface chlorophyll a in the southern tropical Indian Ocean: Local versus remote forcing, Deep Sea Research Part I: Oceanographic Research Papers, 190, 103914, doi:

McKee, D. C., S. C. Doney, A. Della Penna, E. S. Boss, P. Gaube, M. J. Behrenfeld, and D. M. Glover (2022), Lagrangian and Eulerian time and length scales of mesoscale ocean chlorophyll from Bio-Argo floats and satellites, Biogeosciences, 19(24), 5927-5952, doi:

Metzl, N., C. Lo Monaco, C. Leseurre, C. Ridame, J. Fin, C. Mignon, M. Gehlen, and T. T. T. Chau (2022), The impact of the South-East Madagascar Bloom on the oceanic CO2 sink, Biogeosciences, 19(5), 1451-1468, doi:

Mignot, A., K. von Schuckmann, P. Landschützer, F. Gasparin, S. van Gennip, C. Perruche, J. Lamouroux, and T. Amm (2022), Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves, Nature Communications, 13(1), 4300, doi:

Nickford, S., J. B. Palter, K. Donohue, A. J. Fassbender, A. R. Gray, J. Long, A. J. Sutton, N. R. Bates, and Y. Takeshita (2022), Autonomous Wintertime Observations of Air-Sea Exchange in the Gulf Stream Reveal a Perfect Storm for Ocean CO2 Uptake, Geophys. Res. Lett., 49(5), e2021GL096805, doi:

O’Brien, T., and E. Boss (2022), Correction of Radiometry Data for Temperature Effect on Dark Current, with Application to Radiometers on Profiling Floats, Sensors, 22(18), 6771, doi:

Organelli, E., E. Leymarie, C. Zielinski, J. Uitz, F. D’Ortenzio, and H. Claustre (2022), Hyperspectral Radiometry on Biogeochemical-Argo Floats: A Bright Perspective for Phytoplankton Diversity, Oceanography, 34(4), 90-91, doi:

Owens, W. B., N. Zilberman, K. S. Johnson, H. Claustre, M. Scanderbeg, S. Wijffels, and T. Suga (2022), OneArgo: A New Paradigm for Observing the Global Ocean, Mar. Technol. Soc. J., 56(3), 84-90, doi:

Pan, X. L., B. F. Li, and Y. W. Watanabe (2022), Intense ocean freshening from melting glacier around the Antarctica during early twenty-first century, Scientific Reports, 12(1), 383, doi:

Park, M.-S., S. Lee, J.-H. Ahn, S.-J. Lee, J.-K. Choi, and J.-H. Ryu (2022), Decadal Measurements of the First Geostationary Ocean Color Satellite (GOCI) Compared with MODIS and VIIRS Data, Remote Sensing, 14(1), 72, doi:

Petit, F., J. Uitz, C. Schmechtig, C. Dimier, J. Ras, A. Poteau, M. Golbol, V. Vellucci, and H. Claustre (2022), Influence of the phytoplankton community composition on the in situ fluorescence signal: Implication for an improved estimation of the chlorophyll-a concentration from BioGeoChemical-Argo profiling floats, Frontiers in Marine Science, 9, doi:

Picheral, M., et al. (2022), The Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for autonomous and cabled platforms, Limnology and Oceanography: Methods, 20(2), 115-129, doi:

Piontkovski, S. A., A. V. Melnik, I. M. Serikova, V. P. Evstigneev, and S. Dobretsov (2022), Bioluminescence of the tropical Indian Ocean: a multiple-scale variation, Luminescence, 37(9), 1436-1445, doi:

Prakash, P., S. Prakash, M. Ravichandran, N. A. Kumar, and T. V. S. U. Bhaskar (2022), On anomalously high sub-surface dissolved oxygen in the Indian sector of the Southern Ocean, J. Oceanogr., 78(5), 369-380, doi:

Prend, C. J. (2022), Physical Controls on Southern Ocean Biogeochemistry, Ph.D. thesis, 153 pp, University of California, San Diego, United States — California

Prend, C. J., A. R. Gray, L. D. Talley, S. T. Gille, F. A. Haumann, K. S. Johnson, S. C. Riser, I. Rosso, J. Sauvé, and J. L. Sarmiento (2022), Indo-Pacific Sector Dominates Southern Ocean Carbon Outgassing, Glob. Biogeochem. Cycle, 36(7), e2021GB007226, doi:

Prend, C. J., J. M. Hunt, M. R. Mazloff, S. T. Gille, and L. D. Talley (2022), Controls on the Boundary Between Thermally and Non-Thermally Driven pCO2 Regimes in the South Pacific, Geophys. Res. Lett., 49(9), e2021GL095797, doi:

Prend, C. J., M. G. Keerthi, M. Lévy, O. Aumont, S. T. Gille, and L. D. Talley (2022), Sub-Seasonal Forcing Drives Year-To-Year Variations of Southern Ocean Primary Productivity, Glob. Biogeochem. Cycle, 36(7), e2022GB007329, doi:

Roemmich, D., W. S. Wilson, W. J. Gould, W. B. Owens, P.-Y. Le Traon, H. J. Freeland, B. A. King, S. Wijffels, P. J. H. Sutton, and N. Zilberman (2022), Chapter 4 – The Argo Program, in Partnerships in Marine Research, edited by G. Auad and F. K. Wiese, pp. 53-69, Elsevier, doi:

Schallenberg, C., R. F. Strzepek, S. Bestley, B. Wojtasiewicz, and T. W. Trull (2022), Iron Limitation Drives the Globally Extreme Fluorescence/Chlorophyll Ratios of the Southern Ocean, Geophys. Res. Lett., 49(12), e2021GL097616, doi:

Seelanki, V., T. Nigam, and V. Pant (2022), Inconsistent response of biophysical characteristics in the western Bay of Bengal associated with positive Indian Ocean dipole, Oceanologia, 64(4), 595-614, doi:

Seelanki, V., T. Nigam, and V. Pant (2022), Unravelling the roles of Indian Ocean Dipole and El-Niño on winter primary productivity over the Arabian Sea, Deep Sea Research Part I: Oceanographic Research Papers, 190, 103913, doi:

Shu, C., P. Xiu, X. Xing, G. Qiu, W. Ma, R. J. W. Brewin, and S. Ciavatta (2022), Biogeochemical Model Optimization by Using Satellite-Derived Phytoplankton Functional Type Data and BGC-Argo Observations in the Northern South China Sea, Remote Sensing, 14(5), 1297, doi:

Singh, V. K., and M. K. Roxy (2022), A review of ocean-atmosphere interactions during tropical cyclones in the north Indian Ocean, Earth-Science Reviews, 226, 103967, doi:

Stanev, E. V., K. Wahle, and J. Staneva (2022), The Synergy of Data From Profiling Floats, Machine Learning and Numerical Modeling: Case of the Black Sea Euphotic Zone, Journal of Geophysical Research: Oceans, 127(8), e2021JC018012, doi:

Su, J., C. Schallenberg, T. Rohr, P. G. Strutton, and H. E. Phillips (2022), New Estimates of Southern Ocean Annual Net Community Production Revealed by BGC-Argo Floats, Geophys. Res. Lett., 49(15), e2021GL097372, doi:

Suslin, V., V. Slabakova, and T. Churilova (2022), 4D structure of bio-optical characteristics of the upper 70 m layer of the Black Sea: Bio-Argo floats and ocean color scanners, Total Environment Research Themes, 3-4, 100006, doi:

Svishchev, S. V., and A. A. Kubryakov (2022), Impact of Winter Cooling on the Interannual Variability in the Vertical Oxygen Distribution in the Black Sea: Evidence from Bio-Argo Floats, Oceanology, 62(2), 143-154, doi:

Taillandier, V., et al. (2022), Sources of the Levantine Intermediate Water in Winter 2019, Journal of Geophysical Research: Oceans, 127(6), e2021JC017506, doi:

Tan, Z., B. Zhang, X. Wu, M. Dong, and L. Cheng (2022), Quality control for ocean observations: From present to future, Sci. China Earth Sci., 65(2), 215-233, doi:

Wang, B., and K. Fennel (2022), Biogeochemical-Argo data suggest significant contributions of small particles to the vertical carbon flux in the subpolar North Atlantic, Limnol. Oceanogr., 67(11), 2405-2417, doi:

Wang, T., F. Chen, S. Zhang, J. Pan, A. T. Devlin, H. Ning, and W. Zeng (2022), Physical and Biochemical Responses to Sequential Tropical Cyclones in the Arabian Sea, Remote Sensing, 14(3), 529, doi:

Weis, J., C. Schallenberg, Z. Chase, A. R. Bowie, B. Wojtasiewicz, M. M. G. Perron, M. D. Mallet, and P. G. Strutton (2022), Southern Ocean Phytoplankton Stimulated by Wildfire Emissions and Sustained by Iron Recycling, Geophys. Res. Lett., 49(11), e2021GL097538, doi:

Wu, Y., D. C. E. Bakker, E. P. Achterberg, A. N. Silva, D. D. Pickup, X. Li, S. Hartman, D. Stappard, D. Qi, and T. Tyrrell (2022), Integrated analysis of carbon dioxide and oxygen concentrations as a quality control of ocean float data, Communications Earth & Environment, 3(1), 92, doi:

Wu, Y., and D. Qi (2022), Inconsistency between ship- and Argo float-based pCO2 at the intense upwelling region of the Drake Passage, Southern Ocean, Frontiers in Marine Science, 9, doi:

Wyatt, A. M., L. Resplandy, and A. Marchetti (2022), Ecosystem impacts of marine heat waves in the northeast Pacific, Biogeosciences, 19(24), 5689-5705, doi:

Xia, X., Y. Hong, Y. Du, and P. Xiu (2022), Three Types of Antarctic Intermediate Water Revealed by a Machine Learning Approach, Geophys. Res. Lett., 49(21), e2022GL099445, doi:

Xing, X., Z. Lee, P. Xiu, S. Chen, and F. Chai (2022), A Dual-Band Model for the Vertical Distribution of Photosynthetically Available Radiation (PAR) in Stratified Waters, Frontiers in Marine Science, 9, doi:

Xu, D., T. Wang, X. Xing, and C. Bian (2022), The Relationship Between Nitrate and Potential Density in the Ocean South of 30°S, Journal of Geophysical Research: Oceans, 127(11), e2022JC018948, doi:

Yang, B., S. R. Emerson, and M. F. Cronin (2022), Skin Temperature Correction for Calculations of Air-Sea Oxygen Flux and Annual Net Community Production, Geophys. Res. Lett., 49(3), e2021GL096103, doi:

Yang, B., F. Gomez, C. Schmid, and M. Baringer (2022), In situ estimates of net primary production in the open-ocean Gulf of Mexico, Limnology and Oceanography Letters, 7(5), 427-434, doi:

Yarger, D. (2022), Statistical Approaches for Spatially-Dependent Functional Data and their Application in Oceanography, Ph.D. thesis, 212 pp, University of Michigan, United States — Michigan

Yasunaka, S., T. Ono, K. Sasaoka, and K. Sato (2022), Global distribution and variability of subsurface chlorophyll a concentrations, Ocean Sci., 18(1), 255-268, doi:

Zemskova, V. E., T.-L. He, Z. Wan, and N. Grisouard (2022), A deep-learning estimate of the decadal trends in the Southern Ocean carbon storage, Nature Communications, 13(1), 4056, doi:

Zhang, Z., P. Chen, and Z. Mao (2022), SOLS: An Open-Source Spaceborne Oceanic Lidar Simulator, Remote Sensing, 14(8), 1849, doi:

Zheng, H., Y. Ma, J. Huang, J. Yang, D. Su, F. Yang, and X. H. Wang (2022), Deriving vertical profiles of chlorophyll-a concentration in the upper layer of seawaters using ICESat-2 photon-counting lidar, Opt. Express, 30(18), 33320-33336, doi: