This is a bibliography of papers published using Deep Argo float data.

A complete list of all Argo publications is also maintained on this site.

To learn how to properly cite Argo data, click here.

Please send citations for Argo articles to keep this part of the bibliography updated.

Updated May 27, 2022.

Click here to download this file in pdf form.

2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013

2022 (2)

Johnson, G. C., C. B. Whalen, S. G. Purkey, and N. Zilberman (2022), Serendipitous Internal Wave Signals in Deep Argo Data, Geophys. Res. Lett., 49(7), e2022GL097900, doi:

Roemmich, D., W. S. Wilson, W. J. Gould, W. B. Owens, P.-Y. Le Traon, H. J. Freeland, B. A. King, S. Wijffels, P. J. H. Sutton, and N. Zilberman (2022), Chapter 4 – The Argo Program, in Partnerships in Marine Research, edited by G. Auad and F. K. Wiese, pp. 53-69, Elsevier, doi:

2021 (7)

Foppert, A., S. R. Rintoul, S. G. Purkey, N. Zilberman, T. Kobayashi, J.-B. Sallèe, E. M. van Wijk, and L. O. Wallace (2021), Deep Argo Reveals Bottom Water Properties and Pathways in the Australian-Antarctic Basin, Journal of Geophysical Research: Oceans, 126(12), e2021JC017935, doi:

Gao, Z., Z. Chen, X. Huang, Z. Xu, H. Yang, Z. Zhao, C. Ren, and L. Wu (2021), Internal Wave Imprints on Temperature Fluctuations as Revealed by Rapid-Sampling Deep Profiling Floats, Journal of Geophysical Research: Oceans, 126(12), e2021JC017878, doi:

Kobayashi, T. (2021), Salinity bias with negative pressure dependency caused by anisotropic deformation of CTD measuring cell under pressure examined with a dual-cylinder cell model, Deep Sea Research Part I: Oceanographic Research Papers, 167, 103420, doi:

Kobayashi, T., K. Sato, and B. A. King (2021), Observed features of salinity bias with negative pressure dependency for measurements by SBE 41CP and SBE 61 CTD sensors on deep profiling floats, Prog. Oceanogr., 198, 102686, doi:

Lele, R., S. G. Purkey, J. D. Nash, J. A. MacKinnon, A. M. Thurnherr, C. B. Whalen, S. Mecking, G. Voet, and L. D. Talley (2021), Abyssal Heat Budget in the Southwest Pacific Basin, J. Phys. Oceanogr., 51(11), 3317-3333, doi:

Roemmich, D., et al. (2021), The technological, scientific, and sociological revolution of global subsurface ocean observing, rontiers in Ocean Observing: Documenting Ecosystems, Understanding Environmental Changes, Forecasting Hazards. E.S. Kappel, S.K. Juniper, S. Seeyave, E. Smith, and M. Visbeck, eds, A Supplement to Oceanography, 34(4), 2-8, doi:

Tamsitt, V., et al. (2021), Southern Ocean in Antarctica and the Southern Ocean, Bull. Amer. Meteorol. Soc., 102(8), S317-S356, doi:

2020 (10)

André, X., et al. (2020), Preparing the New Phase of Argo: Technological Developments on Profiling Floats in the NAOS Project, Frontiers in Marine Science, 7(934), doi:

Gasparin, F., M. Hamon, E. Rémy, and P.-Y. L. Traon (2020), How Deep Argo Will Improve the Deep Ocean in an Ocean Reanalysis, J. Clim., 33(1), 77-94, doi:

Iqbal, K., S. Piao, and M. Zhang (2020), Decadal Spatiotemporal Halocline Analysis by ISAS15 Due to Influx of Major Rivers in Oceans and Discrepancies Illustrated Near the Bay of Bengal, Water, 12(10), doi:

Iqbal, K., M. Zhang, and S. Piao (2020), Symmetrical and Asymmetrical Rectifications Employed for Deeper Ocean Extrapolations of In Situ CTD Data and Subsequent Sound Speed Profiles, Symmetry, 12(9), 1455, doi:

Johnson, G. C., C. Cadot, J. M. Lyman, K. E. McTaggart, and E. L. Steffen (2020), Antarctic Bottom Water Warming in the Brazil Basin: 1990s Through 2020, From WOCE to Deep Argo, Geophys. Res. Lett., 47(18), e2020GL089191, doi:

Le Traon, P.-Y., et al. (2020), Preparing the New Phase of Argo: Scientific Achievements of the NAOS Project, Frontiers in Marine Science, 7(838), doi:

Mao, C., R. R. King, R. Reid, M. J. Martin, and S. A. Good (2020), Assessing the Potential Impact of Changes to the Argo and Moored Buoy Arrays in an Operational Ocean Analysis System, Frontiers in Marine Science, 7(905), doi:

Silvano, A., et al. (2020), Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies, Nat. Geosci., 13(12), 780-786, doi:

Thomas, G., S. G. Purkey, D. Roemmich, A. Foppert, and S. R. Rintoul (2020), Spatial Variability of Antarctic Bottom Water in the Australian Antarctic Basin From 2018–2020 Captured by Deep Argo, Geophys. Res. Lett., 47(23), e2020GL089467, doi:

Zilberman, N. V., D. H. Roemmich, and J. Gilson (2020), Deep-Ocean Circulation in the Southwest Pacific Ocean Interior: Estimates of the Mean Flow and Variability Using Deep Argo Data, Geophys. Res. Lett., 47(13), e2020GL088342, doi:

2019 (16)

Chang, L., H. Tang, Q. Wang, and W. Sun (2019), Global thermosteric sea level change contributed by the deep ocean below 2000 m estimated by Argo and CTD data, Earth and Planetary Science Letters, 524, 115727, doi:

Davidson, F., et al. (2019), Synergies in Operational Oceanography: The Intrinsic Need for Sustained Ocean Observations, Frontiers in Marine Science, 6(450), doi:

Fox-Kemper, B., et al. (2019), Challenges and Prospects in Ocean Circulation Models, Frontiers in Marine Science, 6(65), doi:

Fujii, Y., et al. (2019), Observing System Evaluation Based on Ocean Data Assimilation and Prediction Systems: On-Going Challenges and a Future Vision for Designing and Supporting Ocean Observational Networks, Frontiers in Marine Science, 6(417), doi:

Hermes, J. C., et al. (2019), A Sustained Ocean Observing System in the Indian Ocean for Climate Related Scientific Knowledge and Societal Needs, Frontiers in Marine Science, 6(355), doi:

Johnson, G. C., S. G. Purkey, N. V. Zilberman, and D. Roemmich (2019), Deep Argo Quantifies Bottom Water Warming Rates in the Southwest Pacific Basin, Geophys. Res. Lett., 46(5), 2662-2669, doi:

Le Traon, P. Y., et al. (2019), From Observation to Information and Users: The Copernicus Marine Service Perspective, Frontiers in Marine Science, 6(234), doi:

Levin, L. A., et al. (2019), Global Observing Needs in the Deep Ocean, Frontiers in Marine Science, 6(241), doi:

Meyssignac, B., et al. (2019), Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance, Frontiers in Marine Science, 6(432), doi:

Palmer, M. D., et al. (2019), Adequacy of the Ocean Observation System for Quantifying Regional Heat and Freshwater Storage and Change, Frontiers in Marine Science, 6(416), doi:

Penny, S. G., et al. (2019), Observational Needs for Improving Ocean and Coupled Reanalysis, S2S Prediction, and Decadal Prediction, Frontiers in Marine Science, 6(391), doi:

Racapé, V., V. Thierry, H. Mercier, and C. Cabanes (2019), ISOW Spreading and Mixing as Revealed by Deep-Argo Floats Launched in the Charlie-Gibbs Fracture Zone, Journal of Geophysical Research: Oceans, 124(10), 6787-6808, doi:

Roemmich, D., et al. (2019), On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array, Frontiers in Marine Science, 6(439), doi:

Roemmich, D., et al. (2019), Deep SOLO: A Full-Depth Profiling Float for the Argo Program, J. Atmos. Ocean. Technol., 36(10), 1967-1981, doi:

Sloyan, B. M., et al. (2019), The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP): A Platform for Integrated Multidisciplinary Ocean Science, Frontiers in Marine Science, 6(445), doi:

Tamsitt, V., L. D. Talley, and M. R. Mazloff (2019), A Deep Eastern Boundary Current Carrying Indian Deep Water South of Australia, Journal of Geophysical Research: Oceans, 124(3), 2218-2238, doi:

2018 (4)

Chang, Y.-S., S. Zhang, A. Rosati, G. A. Vecchi, and X. Yang (2018), An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System, Ocean Science Journal, 53(2), 179-189, doi:

Kobayashi, T. (2018), Rapid volume reduction in Antarctic Bottom Water off the Adélie/George V Land coast observed by deep floats, Deep Sea Research Part I: Oceanographic Research Papers, 140, 95-117, doi:

Masuda, S., S. Osafune, and T. Hemmi (2018), Deep-float salinity data synthesis for deep ocean state estimation: method and impact, Prog. in Earth and Planet. Sci., 5(1), 89, doi:

Wang, T., S. T. Gille, M. R. Mazloff, N. V. Zilberman, and Y. Du (2018), Numerical Simulations to Project Argo Float Positions in the Middepth and Deep Southwest Pacific, J. Atmos. Ocean. Technol., 35(7), 1425-1440, doi:

2017 (2)

Jayne, S. R., D. Roemmich, N. V. Zilberman, S. C. Riser, K. S. Johnson, G. C. Johnson, and S. R. Piotrowicz (2017), The Argo Program: Present and Future, Oceanography, 30(2), 18-28, doi:

Zilberman, N. V. (2017), Deep Argo: Sampling the Total Ocean Volume in State of the Climate in 2016, Bull. Am. Meteorol. Soc., 98(8), S73-S74, doi:

2016 (1)

Le Reste, S., V. Dutreuil, X. André, V. Thierry, C. Renaut, P.-Y. L. Traon, and G. Maze (2016), “Deep-Arvor”: A New Profiling Float to Extend the Argo Observations Down to 4000-m Depth, J. Atmos. Ocean. Technol., 33(5), 1039-1055, doi:

2015 (1)

Johnson, G. C., J. M. Lyman, and S. G. Purkey (2015), Informing Deep Argo Array Design Using Argo and Full-Depth Hydrographic Section Data, J. Atmos. Ocean. Technol., 32(11), 2187-2198, doi:

2013 (3)

Kobayashi, T. (2013), Deep NINJA collects profiles down to 4,000 meters, Sea Technol., 54(2), 41-44, doi:

Kobayashi, T. (2013), A realization of a profiling float for deep ocean observation, Engineering Materials, 61(7), 67-70, doi.

Kobayashi, T., and M. Tachikawa (2013), An introduction of a domestic deep float, DEEP NINJA, and its deep/bottom layer observations in the Southern Ocean, JOS News Letter, 3(1), doi.