This is a list of the highly cited papers using Argo data based on Web of Science and Essential Science Indicators for the past five years.

A complete list of all Argo publications is also maintained on this site.

To learn how to properly cite Argo data, click here.

Updated May 27, 2022.

Click here to download the top cited papers since 2012 in pdf format.

indicates BGC Argo Mission papers.  To see the full BGC Argo Mission bibliography, click here.
indicates Deep Argo Mission papers.  To see the full Deep Argo Mission bibliography, click here.

Huang, B. Y., P. W. Thorne, V. F. Banzon, T. Boyer, G. Chepurin, J. H. Lawrimore, M. J. Menne, T. M. Smith, R. S. Vose, and H. M. Zhang (2017), Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons, J. Clim., 30(20), 8179-8205, doi: 10.1175/jcli-d-16-0836.1. Times cited: 1011.

Loeb, N. G., D. R. Doelling, H. Wang, W. Su, C. Nguyen, J. G. Corbett, L. Liang, C. Mitrescu, F. G. Rose, and S. Kato (2018), Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product, J. Clim., 31(2), 895-918, doi: 10.1175/jcli-d-17-0208.1. Times cited: 291.

Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu (2017), Improved estimates of ocean heat content from 1960 to 2015, Science Advances, 3(3), 10, doi: 10.1126/sciadv.1601545. Times cited: 264.

Tapley, B. D., et al. (2019), Contributions of GRACE to understanding climate change, Nature Climate Change, 9(5), 358-369, doi: 10.1038/s41558-019-0456-2. Times cited: 261.

Medhaug, I., M. B. Stolpe, E. M. Fischer, and R. Knutti (2017), Reconciling controversies about the ‘global warming hiatus’, Nature, 545(7652), 41-47, doi: 10.1038/nature22315. Times cited: 230.

Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss (2019), Improvements in the GISTEMP Uncertainty Model, Journal of Geophysical Research: Atmospheres, 124(12), 6307-6326, doi: 10.1029/2018jd029522. Times cited: 226.

Cazenave A., M. B., Ablain M., Balmaseda M., Bamber J., Barletta V., Beckley B., Benveniste J., Berthier E., Blazquez A., Boyer T., Caceres D., Chambers D., Champollion N., Chao B., Chen J., Cheng L., Church J. A., Chuter S., Cogley J. G., Dangendorf S., Desbruyeres D., Doell P., Domingues C., Falk U., Famiglietti J., Fenoglio-Marc L., Forsberg R., Galassi G., Gardner A., Groh A., Hamlington B., Hogg A., Horwath M., Humphrey V., Husson L., Ishii M., Jaeggi A., Jevrejeva S., Johnson G., Kolodziejczyk N., Kusche J., Lambeck K., Landerer F., Leclercq P., Legresy B., Leuliette E., Llovel W., Longuevergne L., Loomis B. D., Luthcke S. B., Marcos M., Marzeion B., Merchant C., Merrifield M., Milne G., Mitchum G., Mohajerani Y., Monier M., Monselesan D., Nerem S., Palanisamy H., Paul F., Perez B., Piecuch Christopher G., Ponte Rui M., Purkey S. G., Reager J. T., Rietbroek R., Rignot E., Riva R., Roemmich D. H., Sorensen L. S., Sasgen I., Schrama E. J. O., Seneviratne S. I., Shum C. K., Spada G., Stammer D., Van De Wal R., Velicogna I., Von Schuckmann K., Wada Y., Wang Y., Watson C., Wiese D., Wijffels S., Westaway R., Woppelmann G., Wouters B., and W. G. S. L. B. Group (2018), Global sea-level budget 1993–present, Earth Syst. Sci. Data, 10(3), 1551-1590, doi: 10.5194/essd-10-1551-2018. Times cited: 206.

L’Heureux, M. L., et al. (2017), Observing and Predicting the 2015/16 El Niño, Bull. Amer. Meteorol. Soc., 98(7), 1363-1382, doi: 10.1175/bams-d-16-0009.1. Times cited: 190.

Chen, X., X. Zhang, J. A. Church, C. S. Watson, M. A. King, D. Monselesan, B. Legresy, and C. Harig (2017), The increasing rate of global mean sea-level rise during 1993-2014, Nature Clim. Change, 7(7), 492-495, doi: 10.1038/nclimate3325. Times cited: 189.

Oliver, E. C. J., J. A. Benthuysen, N. L. Bindoff, A. J. Hobday, N. J. Holbrook, C. N. Mundy, and S. E. Perkins-Kirkpatrick (2017), The unprecedented 2015/16 Tasman Sea marine heatwave, Nat Commun, 8, 16101, doi: 10.1038/ncomms16101. Times cited: 186.

Voldoire, A., et al. (2019), Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1, Journal of Advances in Modeling Earth Systems, 11(7), 2177-2213, doi: 10.1029/2019ms001683. Times cited: 184.

Carton, J. A., G. A. Chepurin, and L. Chen (2018), SODA3: A New Ocean Climate Reanalysis, J. Clim., 31(17), 6967-6983, doi: 10.1175/jcli-d-18-0149.1. Times cited: 175.

van Sebille, E., et al. (2018), Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., 121, 49-75, doi: https://doi.org/10.1016/j.ocemod.2017.11.008. Times cited: 172.

Lozier, M. S., et al. (2019), A sea change in our view of overturning in the subpolar North Atlantic, Science, 363(6426), 516-521, doi: 10.1126/science.aau6592. Times cited: 167.

 Boyd, P. W., H. Claustre, M. Levy, D. A. Siegel, and T. Weber (2019), Multi-faceted particle pumps drive carbon sequestration in the ocean, Nature, 568(7752), 327-335, doi: 10.1038/s41586-019-1098-2. Times cited: 157.

Holte, J., L. D. Talley, J. Gilson, and D. Roemmich (2017), An Argo mixed layer climatology and database, Geophys. Res. Lett., 44(11), 5618-5626, doi: 10.1002/2017gl073426. Times cited: 136.

Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer (2019), The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15(3), 779-808, doi: 10.5194/os-15-779-2019. Times cited: 130.

Fraser, C. I., A. K. Morrison, A. M. Hogg, E. C. Macaya, E. van Sebille, P. G. Ryan, A. Padovan, C. Jack, N. Valdivia, and J. M. Waters (2018), Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming, Nature Climate Change, 8(8), 704-708, doi: 10.1038/s41558-018-0209-7. Times cited: 130.

Laloyaux, P., et al. (2018), CERA-20C: A Coupled Reanalysis of the Twentieth Century, Journal of Advances in Modeling Earth Systems, 10(5), 1172-1195, doi: doi:10.1029/2018MS001273. Times cited: 127.

Johnson, K. S., et al. (2017), Biogeochemical sensor performance in the SOCCOM profiling float array, J. Geophys. Res.-Oceans, 122(8), 6416-6436, doi: 10.1002/2017jc012838. Times cited: 124.

MacKinnon, J. A., et al. (2017), Climate Process Team on Internal Wave–Driven Ocean Mixing, Bull. Amer. Meteorol. Soc., 98(11), 2429-2454, doi: 10.1175/bams-d-16-0030.1. Times cited: 123.

Lellouche, J. M., et al. (2018), Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system, Ocean Sci., 14(5), 1093-1126, doi: 10.5194/os-14-1093-2018. Times cited: 119.

Dieng, H. B., A. Cazenave, B. Meyssignac, and M. Ablain (2017), New estimate of the current rate of sea level rise from a sea level budget approach, Geophys. Res. Lett., 44(8), 3744-3751, doi: 10.1002/2017GL073308. Times cited: 115.

Lozier, M. S., et al. (2017), Overturning in the Subpolar North Atlantic Program: A New International Ocean Observing System, Bull. Amer. Meteorol. Soc., 98(4), 737-752, doi: 10.1175/bams-d-16-0057.1. Times cited: 115.

Roemmich, D., et al. (2019), On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array, Frontiers in Marine Science, 6, 28, doi: 10.3389/fmars.2019.00439. Times cited: 113.

Tommasi, D., et al. (2017), Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts, Prog. Oceanogr., 152, 15-49, doi: 10.1016/j.pocean.2016.12.011. Times cited: 110.

Séférian, R., et al. (2019), Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day and Future Climate, Journal of Advances in Modeling Earth Systems, 11(12), 4182-4227, doi: 10.1029/2019MS001791. Times cited: 103.

Pabortsava, K., and R. S. Lampitt (2020), High concentrations of plastic hidden beneath the surface of the Atlantic Ocean, Nature Communications, 11(1), 11, doi: 10.1038/s41467-020-17932-9. Times cited: 87.

Bronselaer, B., M. Winton, S. M. Griffies, W. J. Hurlin, K. B. Rodgers, O. V. Sergienko, R. J. Stouffer, and J. L. Russell (2018), Change in future climate due to Antarctic meltwater, Nature, 564(7734), 53-58, doi: 10.1038/s41586-018-0712-z. Times cited: 87.

 Lombard, F., et al. (2019), Globally Consistent Quantitative Observations of Planktonic Ecosystems, Frontiers in Marine Science, 6(196), doi: 10.3389/fmars.2019.00196. Times cited: 85.

Meehl, G. A., J. M. Arblaster, C. T. Y. Chung, M. M. Holland, A. DuVivier, L. Thompson, D. Yang, and C. M. Bitz (2019), Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016, Nature Communications, 10(1), 14, doi: 10.1038/s41467-018-07865-9. Times cited: 85.

Rintoul, S. R. (2018), The global influence of localized dynamics in the Southern Ocean, Nature, 558(7709), 209-218, doi: 10.1038/s41586-018-0182-3. Times cited: 85.

Boutin, J., J. L. Vergely, S. Marchand, F. D’Amico, A. Hasson, N. Kolodziejczyk, N. Reul, G. Reverdin, and J. Vialard (2018), New SMOS Sea Surface Salinity with reduced systematic errors and improved variability, Remote Sens. Environ., 214, 115-134, doi: https://doi.org/10.1016/j.rse.2018.05.022. Times cited: 79.

Frederikse, T., et al. (2020), The causes of sea-level rise since 1900, Nature, 584(7821), 393-397, doi: 10.1038/s41586-020-2591-3. Times cited: 72.

Le Traon, P. Y., et al. (2019), From Observation to Information and Users: The Copernicus Marine Service Perspective, Frontiers in Marine Science, 6, 22, doi: 10.3389/fmars.2019.00234. Times cited: 69.

  Levin, L. A., et al. (2019), Global Observing Needs in the Deep Ocean, Frontiers in Marine Science, 6(241), doi: 10.3389/fmars.2019.00241. Times cited: 68.

Claustre, H., K. S. Johnson, and Y. Takeshita (2020), Observing the Global Ocean with Biogeochemical-Argo, in Annual Review of Marine Science, Vol 12, edited by C. A. Carlson and S. J. Giovannoni, pp. 23-48, Annual Reviews, Palo Alto, doi:10.1146/annurev-marine-010419-010956. Times cited: 66.

Kennedy, J. J., N. A. Rayner, C. P. Atkinson, and R. E. Killick (2019), An Ensemble Data Set of Sea Surface Temperature Change From 1850: The Met Office Hadley Centre HadSST.4.0.0.0 Data Set, Journal of Geophysical Research: Atmospheres, 124(14), 7719-7763, doi: 10.1029/2018jd029867. Times cited: 66.

Bittig, H. C., A. Kortzinger, C. Neill, E. van Ooijen, J. N. Plant, J. Hahn, K. S. Johnson, B. Yang, and S. R. Emerson (2018), Oxygen Optode Sensors: Principle, Characterization, Calibration, and Application in the Ocean, Frontiers in Marine Science, 4, 25, doi: 10.3389/fmars.2017.00429. Times cited: 63.

 Groom, S., et al. (2019), Satellite Ocean Colour: Current Status and Future Perspective, Frontiers in Marine Science, 6(485), doi: 10.3389/fmars.2019.00485. Times cited: 62.

Uotila, P., et al. (2019), An assessment of ten ocean reanalyses in the polar regions, Climate Dynamics, 52(3), 1613-1650, doi: 10.1007/s00382-018-4242-z. Times cited: 62.

von Schuckmann, K., et al. (2020), Heat stored in the Earth system: where does the energy go?, Earth Syst. Sci. Data, 12(3), 2013-2041, doi: 10.5194/essd-12-2013-2020. Times cited: 59.

 Briggs, N., G. Dall’Olmo, and H. Claustre (2020), Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans, Science, 367(6479), 791, doi: 10.1126/science.aay1790. Times cited: 58.

Frajka-Williams, E., et al. (2019), Atlantic Meridional Overturning Circulation: Observed Transport and Variability, Frontiers in Marine Science, 6(260), doi: 10.3389/fmars.2019.00260. Times cited: 58.

Fox-Kemper, B., et al. (2019), Challenges and Prospects in Ocean Circulation Models, Frontiers in Marine Science, 6(65), doi: 10.3389/fmars.2019.00065. Times cited: 57.

Vinogradova, N., et al. (2019), Satellite Salinity Observing System: Recent Discoveries and the Way Forward, Frontiers in Marine Science, 6(243), doi: 10.3389/fmars.2019.00243. Times cited: 57.

Meyssignac, B., et al. (2019), Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance, Frontiers in Marine Science, 6, 31, doi: 10.3389/fmars.2019.00432. Times cited: 56.

Holliday, N. P., et al. (2020), Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic, Nature Communications, 11(1), 585, doi: 10.1038/s41467-020-14474-y. Times cited: 55.

Reul, N., et al. (2020), Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019), Remote Sens. Environ., 242, 111769, doi: https://doi.org/10.1016/j.rse.2020.111769. Times cited: 55.

 Meyssignac, B., et al. (2019), Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance, Frontiers in Marine Science, 6(432), doi: 10.3389/fmars.2019.00432. Times cited: 54.

Huang, B. Y., C. Y. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H. M. Zhang (2021), Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, J. Clim., 34(8), 2923-2939, doi: 10.1175/jcli-d-20-0166.1. Times cited: 50.

Chai, F., K. S. Johnson, H. Claustre, X. G. Xing, Y. T. Wang, E. Boss, S. Riser, K. Fennel, O. Schofield, and A. Sutton (2020), Monitoring ocean biogeochemistry with autonomous platforms, Nature Reviews Earth & Environment, 1(6), 315-326, doi: 10.1038/s43017-020-0053-y. Times cited: 45.

Doi, T., S. K. Behera, and T. Yamagata (2020), Predictability of the Super IOD Event in 2019 and Its Link With El Niño Modoki, Geophys. Res. Lett., 47(7), e2019GL086713, doi: https://doi.org/10.1029/2019GL086713. Times cited: 43.

Pearlman, J., et al. (2019), Evolving and Sustaining Ocean Best Practices and Standards for the Next Decade, Frontiers in Marine Science, 6(277), doi: 10.3389/fmars.2019.00277. Times cited: 43.

 Séférian, R., et al. (2020), Tracking Improvement in Simulated Marine Biogeochemistry Between CMIP5 and CMIP6, Curr Clim Change Rep, 6(3), 95-119, doi: 10.1007/s40641-020-00160-0. Times cited: 41.

Randelhoff, A., J. Holding, M. Janout, M. K. Sejr, M. Babin, J. E. Tremblayu, and M. B. Alkire (2020), Pan-Arctic Ocean Primary Production Constrained by Turbulent Nitrate Fluxes, Frontiers in Marine Science, 7, 15, doi: 10.3389/fmars.2020.00150. Times cited: 39.

Amaya, D. J., A. J. Miller, S.-P. Xie, and Y. Kosaka (2020), Physical drivers of the summer 2019 North Pacific marine heatwave, Nature Communications, 11(1), 1903, doi: 10.1038/s41467-020-15820-w. Times cited: 37.

Kiss, A. E., et al. (2020), ACCESS-OM2 v1.0: a global ocean–sea ice model at three resolutions, Geosci. Model Dev., 13(2), 401-442, doi: 10.5194/gmd-13-401-2020. Times cited: 37.

Loeb, N. G., G. C. Johnson, T. J. Thorsen, J. M. Lyman, F. G. Rose, and S. Kato (2021), Satellite and Ocean Data Reveal Marked Increase in Earth’s Heating Rate, Geophys. Res. Lett., 48(13), e2021GL093047, doi: https://doi.org/10.1029/2021GL093047. Times cited: 12.

Hoteit, I., et al. (2021), Towards an End-to-End Analysis and Prediction System for Weather, Climate, and Marine Applications in the Red Sea, Bull. Amer. Meteorol. Soc., 102(1), E99-E122, doi: 10.1175/bams-d-19-0005.1. Times cited: 10.